During the COVID-19 pandemic, the bidirectional relationship between policy and data reliability has been a challenge for researchers of the local municipal health services. Policy decisions on population specific test locations and selective registration of negative test results led to population differences in data quality. This hampered the calculation of reliable population specific infection rates needed to develop proper data driven public health policy. https://doi.org/10.1007/s12508-023-00377-y
MULTIFILE
Adherence to combination antiretroviral therapy (ART) is a key predictor of the success of human immunodeficiency virus (HIV) treatment, and is potentially amenable to intervention. Insight into predictors or correlates of non-adherence to ART may help guide targets for the development of adherence-enhancing interventions. Our objective was to review evidence on predictors/correlates of adherence to ART, and to aggregate findings into quantitative estimates of their impact on adherence.
To treat microbial infections, antibiotics are life-saving but the increasing antimicrobial resistance is a World-wide problem. Therefore, there is a great need for novel antimicrobial substances. Fruit and flower anthocyanins have been recognized as promising alternatives to traditional antibiotics. How-ever, for future application as innovative alternative antibiotics, the full potential of anthocyanins should be further investigated. The antimicrobial potential of anthocyanin mixtures against different bacterial species has been demonstrated in literature. Preliminary experiments performed by our laboratories, using grape, rose and red cabbage anthocyanins against S. aureus and E. coli confirmed the antimicrobial potential of these substances. Hundreds of different anthocyanin entities have been described. However, which of these entities hold antimicrobial effects is currently unknown. Our preliminary data show that an-thocyanins extracted from grape, rose and red cabbage contain different collections of anthocyanin entities with differential antimicrobial efficacies. Our focus is on the extraction and characterization of anthocyanins from various crop residues. Grape peels are residues in the production of wine, while red rose and tulip leaves are residues in the production of tulip bulbs and regular horticulture. The presence of high-grade substances for pharmacological purposes in these crops may provide an innovative strategy to add value to other-wise invaluable crop residues. This project will be performed by the collaborative effort of our institute together with the Medi-cal Microbiology department of the University Medical Center Groningen (UMCG), 'Wijnstaete', a small-scale wine-producer (Lemelerveld) and Imenz Bioengineering (Groningen), a company that develops processes to improve the production of biobased chemicals from waste products. Within this project, we will focus on the antimicrobial efficacy of anthocyanin-mixtures from sources that are abundantly and locally available as a residual waste product. The project is part of a larger re-search effect to further characterize, modify and study the antimicrobial effects of specific anthocy-anin entities.
Water treatment companies are more and more interested in chemical-free water treatment. This is a solution that might not only decrease costs of chemicals, but also decrease possible formation of by-products and contribute to decreasing the introduction of emerging contaminants in the environment. A possible route for this is the use of magnetic fields based treatment. Magnetic fields exist around us (our planet is surrounded by such fields) but are not broadly used in water treatment. A reason for this situation isthe fact that water treatment is a rather traditional market and magnetic treatment, conversely, a rather controversial and (still) not completely understood. Even with such resistance, recently it has been shown that magnetic fields applied to drinking water resulted in significant structural change of its microbiome [1]. This community structural change was clearly detected with a newly developed flow cytometry method, where the phenotypic characteristics of the entire microbial community could be analysed instantly [2-9]. Lab-scale batch experiments have shown that magnetic fields can selectively boost the growth of smaller bacteria [1][3] and indicated as a next step that the same principle could be addressed in pilot scale tests. ISusMag is structured to apply the robust and instant flow cytometry method to examine the effect of magnetic fields on drinking water at pilot scale under realistic field conditions. For this purpose, groundwater will be evenly distributed into two (pipe)lines of the same length: one will be magnetically treated, and one will be used as control. Samples will be taken at the end of the two pipes for flow cytometry examination. Measurement results can help drinking water companies to understand whether a magnetic treatment is an alternative to control the growth of pathogenic bacteria instead of classical chemical treatment (disinfection).
Routine neuropathology diagnostic methods are limited to histological staining techniques or directed PCR for pathogen detection and microbial cultures of brain abscesses are negative in one-third of the cases. Fortunately, due to improvements in technology, metagenomic sequencing of a conserved bacterial gene could provide an alternative diagnostic method. For histopathological work up, formalin-fixed paraffin-embedded (FFPE) tissue with highly degraded nucleic acids is the only material being available. Innovative amplicon-specific next-generation sequencing (NGS) technology has the capability to identify pathogens based on the degraded DNA within a few hours. This approach significantly accelerates diagnostics and is particularly valuable to identify challenging pathogens. This ensures optimal treatment for the patient, minimizing unnecessary health damage. Within this project, highly conserved primers in a universal PCR will be used, followed by determining the nucleotide sequence. Based on the obtained data, it is then precisely determined which microorganism(s) is/are responsible for the infection, even in cases of co-infection with multiple pathogens. This project will focus to answer the following research question; how can a new form of rapid molecular diagnostics contribute to the identification of microbial pathogens in CNS infections? The SME partner Molecular Biology Systems B.V. (MBS) develops and sells equipment for extremely rapid execution of the commonly used PCR. In this project, the lectorate Analysis Techniques in the Life Sciences (Avans) will, in collaboration with MBS, Westerdijk Institute (WI-KNAW) and the Institute of Neuropathology (Münster, DE) establish a new molecular approach for fast diagnosis within CNS infections using this MBS technology. This enables the monitoring of infectious diseases in a fast and user-friendly manner, resulting in an improved treatment plan.