Standard SARS-CoV-2 testing protocols using nasopharyngeal/throat (NP/T) swabs are invasive and require trained medical staff for reliable sampling. In addition, it has been shown that PCR is more sensitive as compared to antigen-based tests. Here we describe the analytical and clinical evaluation of our in-house RNA extraction-free saliva-based molecular assay for the detection of SARS-CoV-2. Analytical sensitivity of the test was equal to the sensitivity obtained in other Dutch diagnostic laboratories that process NP/T swabs. In this study, 955 individuals participated and provided NP/T swabs for routine molecular analysis (with RNA extraction) and saliva for comparison. Our RT-qPCR resulted in a sensitivity of 82,86% and a specificity of 98,94% compared to the gold standard. A false-negative ratio of 1,9% was found. The SARS-CoV-2 detection workflow described here enables easy, economical, and reliable saliva processing, useful for repeated testing of individuals.
LINK
Background While low back pain occurs in nearly everybody and is the leading cause of disability worldwide, we lack instruments to accurately predict persistence of acute low back pain. We aimed to develop and internally validate a machine learning model predicting non-recovery in acute low back pain and to compare this with current practice and ‘traditional’ prediction modeling. Methods Prognostic cohort-study in primary care physiotherapy. Patients (n = 247) with acute low back pain (= one month) consulting physiotherapists were included. Candidate predictors were assessed by questionnaire at baseline and (to capture early recovery) after one and two weeks. Primary outcome was non-recovery after three months, defined as at least mild pain (Numeric Rating Scale > 2/10). Machine learning models to predict non-recovery were developed and internally validated, and compared with two current practices in physiotherapy (STarT Back tool and physiotherapists’ expectation) and ‘traditional’ logistic regression analysis. Results Forty-seven percent of the participants did not recover at three months. The best performing machine learning model showed acceptable predictive performance (area under the curve: 0.66). Although this was no better than a’traditional’ logistic regression model, it outperformed current practice. Conclusions We developed two prognostic models containing partially different predictors, with acceptable performance for predicting (non-)recovery in patients with acute LBP, which was better than current practice. Our prognostic models have the potential of integration in a clinical decision support system to facilitate data-driven, personalized treatment of acute low back pain, but needs external validation first.
MULTIFILE
Abstract: Clinicians find it challenging to engage with patients who engage in self-harm. Improving the self-efficacy of professionals who treat self-harm patients may be an important step toward accomplishing better treatment of self-harm. However, there is no instrument available that assesses the self-efficacy of clinicians dealing with self-harm. The aim of this study is to describe the development and validation of the Self-Efficacy in Dealing with Self-Harm Questionnaire (SEDSHQ). This study tests the questionnaire’s feasibility, test-retest reliability, internal consistency, content validity, construct validity (factor analysis and convergent validity) and sensitivity to change. The Self-Efficacy in Dealing with Self-Harm Questionnaire is a 27-item instrument which has a 3-factor structure, as found in confirmatory factor analysis. Testing revealed high content validity, significant correlation with a subscale of the Attitude Towards Deliberate Self-Harm Questionnaire (ADSHQ), satisfactory test-retest correlation and a Cronbach’s alpha of 0.95. Additionally, the questionnaire was able to measure significant changes after an intervention took place, indicating sensitivity to change. We conclude that the present study indicates that the Self-Efficacy in Dealing with Self-Harm Questionnaire is a valid and reliable instrument for assessing the level of self-efficacy in response to self-harm.
The Water Framework Directive imposes challenges regarding the environmental risk of plastic pollution. The quantification, qualification, monitoring, and risk assessment of nanoplastics and small microplastic (<20 µm) is crucial. Environmental nano- and micro-plastics (NMPs) are highly diverse, accounting for this diversity poses a big challenge in developing a comprehensive understanding of NMPs detection, quantification, fate, and risks. Two major issues currently limit progress within this field: (a) validation and broadening the current analytical tools (b) uncertainty with respect to NMPs occurrence and behaviour at small scales (< 20 micron). Tracking NMPs in environmental systems is currently limited to micron size plastics due to the size detection limit of the available analytical techniques. There are currently no methods that can detect nanoplastics in real environmental systems. A major bottleneck is the incompatibility between commercially available NMPs and those generated from plastic fragments degradation in the environment. To track nanoplastics in environmental and biological systems, some research groups synthesized metal-doped nanoplastics, often limited to one polymer type and using high concentrations of surfactants, rendering these synthesized nanoplastics to not be representative of nanoplatics found in real environment. NanoManu proposes using Electrohydrodynamic Atomization to generate metal doped NMPs of different polymers types, sizes, and shapes, which will be representative of the real environmental nanoplastics. The synthesized nanoplastics will be used as model particles in environmental studies. The synthesized nanoplastics will be characterized and tested using different analytical methods, e.g., SEM-EDX, TEX, GCpyrMS, FFF, µFTIR and SP-ICP-MS. NanoManu is a first and critical step towards generating a comprehensive state-of-the-art analytical and environmental knowledge on the environmental fate and risks of nanoplastics. This knowledge impacts current risk assessment tools, efficient interventions to limit emissions and adequate regulations related to NMPs.