Introduction: Patient information holds an important role in knee arthroplasty surgery regarding patients’ expectations and outcomes after surgery. The purpose of the present study was to explore the experiences and opinions of patients undergoing knee arthroplasty (KA) surgery on an information brochure provided preoperatively. Methods: A qualitative case study of 8 patients using individual semi-structured interviews was conducted to explore patients’ opinions on an information brochure in KA surgery. Results: Patients rated the brochure as good and recommended its use. Unsatisfactory information regarding wound healing, pain expectations, postoperative exercises and use of walking aids was reported. Patients stated that the table of contents was insufficient and the size of the brochure (A4-format) too large. Patients reported to have no need for additional digital sources (e.g. applications, websites). Conclusion: These opinions support the use of an information brochure. The reported opinions were used to improve the brochure. Future research should focus on the improvement of information sources by involving patients (and other users) in the development process in which the information is tailored towards patient needs.
DOCUMENT
Background: Knee and hip osteoarthritis (OA) among older adults account for substantial disability and extensive healthcare use. Effective pain coping strategies help to deal with OA. This study aims to determine the long-term relationship between pain coping style and the course of healthcare use in patients with knee and/or hip OA over 10 years. Methods: Baseline and 10-year follow-up data of 861 Dutch participants with early knee and/or hip OA from the Cohort Hip and Cohort Knee (CHECK) cohort were used. The amount of healthcare use (HCU) and pain coping style were measured. Generalized Estimating Equations were used, adjusted for relevant confounders. Results: At baseline, 86.5% of the patients had an active pain coping style. Having an active pain coping style was significantly (p = 0.022) associated with an increase of 16.5% (95% CI, 2.0–32.7) in the number of used healthcare services over 10 years. Conclusion: Patients with early knee and/or hip OA with an active pain coping style use significantly more different healthcare services over 10 years, as opposed to those with a passive pain coping style. Further research should focus on altered treatment (e.g., focus on self-management) in patients with an active coping style, to reduce HCU.
DOCUMENT
Background The gait modification strategies Trunk Lean and Medial Thrust have been shown to reduce the external knee adduction moment (EKAM) in patients with knee osteoarthritis which could contribute to reduced progression of the disease. Which strategy is most optimal differs between individuals, but the underlying mechanism that causes this remains unknown. Research question Which gait parameters determine the optimal gait modification strategy for individual patients with knee osteoarthritis? Methods Forty-seven participants with symptomatic medial knee osteoarthritis underwent 3-dimensional motion analysis during comfortable gait and with two gait modification strategies: Medial Thrust and Trunk Lean. Kinematic and kinetic variables were calculated. Participants were then categorized into one of the two subgroups, based on the modification strategy that reduced the EKAM the most for them. Multiple logistic regression analysis with backward elimination was used to investigate the predictive nature of dynamic parameters obtained during comfortable walking on the optimal modification gait strategy. Results For 68.1 % of the participants, Trunk Lean was the optimal strategy in reducing the EKAM. Baseline characteristics, kinematics and kinetics did not differ significantly between subgroups during comfortable walking. Changes to frontal trunk and tibia angles correlated significantly with EKAM reduction during the Trunk Lean and Medial Thrust strategies, respectively. Regression analysis showed that MT is likely optimal when the frontal tibia angle range of motion and peak knee flexion angle in early stance during comfortable walking are high (R2Nagelkerke = 0.12). Significance Our regression model based solely on kinematic parameters from comfortable walking contained characteristics of the frontal tibia angle and knee flexion angle. As the model explains only 12.3 % of variance, clinical application does not seem feasible. Direct assessment of kinetics seems to be the most optimal strategy for selecting the most optimal gait modification strategy for individual patients with knee osteoarthritis.
MULTIFILE
BACKGROUND: Patients with knee osteoarthritis can adapt their gait to unload the most painful knee joint in order to try to reduce pain and improve physical function. However, these gait adaptations can cause higher loads on the contralateral joints. The aim of the study was to investigate the interlimb differences in knee and hip frontal plane moments during gait in patients with knee osteoarthritis and in healthy controls.METHODS: Forty patients with knee osteoarthritis and 19 healthy matched controls were measured during comfortable treadmill walking. Frontal plane joint moments were obtained of both hip and knee joints. Differences in interlimb moments within each group were assessed using statistical parametric mapping and discrete gait parameters.FINDINGS: No interlimb differences were observed in patients with knee osteoarthritis and control subjects at group level. Furthermore, the patients presented similar interlimb variability as the controls. In a small subgroup (n = 12) of patients, the moments in the most painful knee were lower than in the contralateral knee, while the other patients (n = 28) showed higher moments in the most painful knee compared to the contralateral knee. However, no interlimb differences in the hip moments were observed within the subgroups.INTERPRETATION: Patients with knee osteoarthritis do not have interlimb differences in knee and hip joint moments. Patients and healthy subjects demonstrate a similar interlimb variability in the moments of the lower extremities. In this context, differences in knee pain in patients with knee osteoarthritis did not induce any interlimb differences in the frontal plane knee and hip moments.
DOCUMENT
Objective: To determine (1) if Medial Thrust or Trunk Lean reduces the knee adduction moment (EKAM) the most during gait in patients with medial knee osteoarthritis, (2) if the best overall strategy is the most effective for each patient and (3) if these strategies affect ankle and hip kinetics. Design: Thirty patients with symptomatic medial knee osteoarthritis underwent 3-dimensional gait analysis. Participants received verbal instructions on two gait strategies (Trunk Lean and Medial Thrust) in randomized order after comfortable walking was recorded. The peaks and impulse of the EKAM and strategy-specific kinematic and kinetic variables were calculated for all conditions. Results: Early stance EKAM peak was significantly reduced during Medial Thrust (29%). During Trunk Lean, early and late stance EKAM peak and EKAM impulse reduced significantly (38%, 21% and 25%, respectively). In 79% of the subjects, the Trunk Lean condition was significantly more effective in reducing EKAM peak than Medial Thrust. Peak ankle dorsi and plantar flexion, knee flexion and hip extension and adduction moments were not significantly increased. Conclusions: Medial Thrust and Trunk Lean reduced the EKAM during gait in patients with knee osteoarthritis. Individual selection of the most effective gait modification strategy seems vital to optimally reduce dynamic knee loading during gait. No detrimental effects on external ankle and hip moments or knee flexion moments were found for these conditions.
DOCUMENT
The purpose of this study is to create an accurate experimental database for the passive (in vitro)freedom-of-motion characteristics of the human knee joint on a subject to subject basis, suitable for the verification and enhancement of mathematical knee-joint models. Knee-joint specimens in a six degree-of-freedom motion rig are moved through flexion under several combinations of external loads, including tibial torques, axial forces and AP-forces. Euler rotation angles and translation vectors, describing the relative, spatial motions of the joint are measured using an accurate Roentgen Stereo Photogrammetric system. Conceptually the joint is considered as a two degrees-of-freedom of motion mechanism (flexion-tibial rotation), whereby the limits of internal and external tibial rotation are defined at torques of ± 3 Nm. The motion pathways along these limits are denned as the envelopes of passive knee joint motion. It is found that these envelope pathways are consistent and hardly influenced by additional axial forces up to 300 N and AP-forces of 30 N. Within the envelope of motion, however, the motion patterns are highly susceptible to small changes in the external load configuration. It is shown that the external tibial rotation during extension ('screw-home mechanism') is not an obligatory effect of the passive joint characteristics, but a direct result of the external loads. Anatomical differences notwithstanding, the inter-individual discrepancies in the motion patterns of the four specimens tested, showed to be relatively small in a qualitative sense. Quantitative differences can be explained by small differences in the alignment of the coordinate systems relative to the joint anatomy and by differences in rotatory laxity.
DOCUMENT
Knee joint instability is frequently reported by patients with knee osteoarthritis (KOA). Objective metrics to assess knee joint instability are lacking, making it difficult to target therapies aiming to improve stability. Therefore, the aim of this study was to compare responses in neuromechanics to perturbations during gait in patients with self-reported knee joint instability (KOA-I) versus patients reporting stable knees (KOA-S) and healthy control subjects.Forty patients (20 KOA-I and 20 KOA-S) and 20 healthy controls were measured during perturbed treadmill walking. Knee joint angles and muscle activation patterns were compared using statistical parametric mapping and discrete gait parameters. Furthermore, subgroups (moderate versus severe KOA) based on Kellgren and Lawrence classification were evaluated.Patients with KOA-I generally had greater knee flexion angles compared to controls during terminal stance and during swing of perturbed gait. In response to deceleration perturbations the patients with moderate KOA-I increased their knee flexion angles during terminal stance and pre-swing. Knee muscle activation patterns were overall similar between the groups. In response to sway medial perturbations the patients with severe KOA-I increased the co-contraction of the quadriceps versus hamstrings muscles during terminal stance.Patients with KOA-I respond to different gait perturbations by increasing knee flexion angles, co-contraction of muscles or both during terminal stance. These alterations in neuromechanics could assist in the assessment of knee joint instability in patients, to provide treatment options accordingly. Furthermore, longitudinal studies are needed to investigate the consequences of altered neuromechanics due to knee joint instability on the development of KOA.
DOCUMENT
BackgroundPatients undergoing total knee arthroplasty (TKA) often experience strength deficits both pre- and post-operatively. As these deficits may have a direct impact on functional recovery, strength assessment should be performed in this patient population. For these assessments, reliable measurements should be used. This study aimed to determine the inter- and intrarater reliability of hand-held dynamometry (HHD) in measuring isometric knee strength in patients awaiting TKA.MethodsTo determine interrater reliability, 32 patients (81.3% female) were assessed by two examiners. Patients were assessed consecutively by both examiners on the same individual test dates. To determine intrarater reliability, a subgroup (n = 13) was again assessed by the examiners within four weeks of the initial testing procedure. Maximal isometric knee flexor and extensor strength were tested using a modified Citec hand-held dynamometer. Both the affected and unaffected knee were tested. Reliability was assessed using the Intraclass Correlation Coefficient (ICC). In addition, the Standard Error of Measurement (SEM) and the Smallest Detectable Difference (SDD) were used to determine reliability.ResultsIn both the affected and unaffected knee, the inter- and intrarater reliability were good for knee flexors (ICC range 0.76-0.94) and excellent for knee extensors (ICC range 0.92-0.97). However, measurement error was high, displaying SDD ranges between 21.7% and 36.2% for interrater reliability and between 19.0% and 57.5% for intrarater reliability. Overall, measurement error was higher for the knee flexors than for the knee extensors.ConclusionsModified HHD appears to be a reliable strength measure, producing good to excellent ICC values for both inter- and intrarater reliability in a group of TKA patients. High SEM and SDD values, however, indicate high measurement error for individual measures. This study demonstrates that a modified HHD is appropriate to evaluate knee strength changes in TKA patient groups. However, it also demonstrates that modified HHD is not suitable to measure individual strength changes. The use of modified HHD is, therefore, not advised for use in a clinical setting.
MULTIFILE
BackgroundGait analysis has been used for decades to quantify knee function in patients with knee osteoarthritis; however, it is unknown whether and to what extent inter-laboratory differences affect the comparison of gait data between studies. Therefore, the aim of this study was to perform an inter-laboratory comparison of knee biomechanics and muscle activation patterns during gait of patients with knee osteoarthritis.MethodsKnee biomechanics and muscle activation patterns from patients with knee osteoarthritis were analyzed, previously collected at Dalhousie University (DAL: n = 55) and Amsterdam UMC, VU medical center (VUmc: n = 39), using their in-house protocols. Additionally, one healthy male was measured at both locations. Both direct comparisons and after harmonization of components of the protocols were made. Inter-laboratory comparisons were quantified using statistical parametric mapping analysis and discrete gait parameters.ResultsThe inter-laboratory comparison showed offsets in the sagittal plane angles, moments and frontal plane angles, and phase shifts in the muscle activation patterns. Filter characteristics, initial contact identification and thigh anatomical frame definitions were harmonized between the laboratories. After this first step in protocol harmonization, the offsets in knee angles and sagittal plane moments remained, but the inter-laboratory comparison of the muscle activation patterns improved.ConclusionsInter-laboratory differences obstruct valid comparisons of gait datasets from patients with knee osteoarthritis between gait laboratories. A first step in harmonization of gait analysis protocols improved the inter-laboratory comparison. Further protocol harmonization is recommended to enable valid comparisons between labs, data-sharing and multicenter trials to investigate knee function in patients with knee osteoarthritis.
MULTIFILE
: Knee injuries commonly occur in later stages of competition indicating that fatigue may influence dynamic knee stability. Force sense (FS) is a submodality of proprioception influenced by muscle mechanoreceptors, and, if negatively affected by fatigue, may results in less effective neuromuscular control. OBJECTIVES: To determine the effects of peripheral fatigue on FS of the quadriceps and hamstrings. DESIGN: Quasi-experimental study design. PARTICIPANTS: Twenty healthy and physically active females and males (age: 23.4±2.7 years, mass: 69.5±10.9kg, height: 169.7±9.4cm) participated. INTERVENTIONS: Fatigue was induced during a protocol with two sets of 40 repetitions, and the last set truncated at 90 repetitions or stopped if torque production dropped below 25% of peak torque. MAIN OUTCOME MEASURES: FS of the hamstrings and quadriceps was tested on separate days before and after three sets of isokinetic knee flexion and extension to fatigue by examining the ability to produce a target isometric torque (15% MVIC) with and without visual feedback (FS Error). Electromyographic data of the tested musculature were collected in order to calculate and determine median frequency shift. T-tests and Wilcoxon Signed Rank tests were conducted to examine pre-fatigue and post-fatigue FS Error for flexion and extension. RESULTS: Despite verification of fatigue via torque production decrement and shift in median frequency, no significant differences were observed in FS Error for either knee flexion (pre=0.54±2.28 N·m; post=0.47±1.62 N·m) or extension (pre=-0.28±2.69 N·m; post=-0.21±1.78 N·m) pre-fatigue compared to the post-fatigue condition. CONCLUSIONS: Although previous research has demonstrated that peripheral fatigue negatively affects TTDPM, it did not affect FS as measured in this study. The peripheral fatigue protocol may have a greater effect on the mechanoreceptors responsible for TTDPM than those responsible for FS. Further investigation into the effects of fatigue across various modes of proprioception is warranted.
DOCUMENT