Learning by Design (LBD) is a project-based inquiry approach for interdisciplinary teaching that uses design contexts to learn skills and conceptual knowledge. Research around the year 2000 showed that LBD students achieved high skill performances but disappointing conceptual learning gains. A series of exploratory studies, previous to the study in this paper, indicated how to enhance concept learning. Small-scale tested modifications, based on explicit teaching and scaffolding, were promising and revealed improved conceptual learning gains. The pretest-posttest design study discussed in this paper confirms this improvement quantitatively by comparing the conceptual learning gains for students exposed to the modified approach (n = 110) and traditional approach (n = 77). Further modifications, which resulted in a remodified approach tested with 127 students, show a further improvement through reduced fragmentation of the task and addressed science. Overall, the remodified approach (FITS model: Focus - Investigation - Technological design - Synergy) enriches technology education by stimulating an empirical and conceptual way of creating design solutions.
DOCUMENT
Educational programs teaching entrepreneurial behaviour and knowledge are crucial to a vital and healthy economy. The concept of building a Communities of Practice (CoP) could be very promising. CoP’s are formed by people who engage in a process of collective learning in a shared domain of human endeavour (Wenger, McDermott and Snyder, 2002). They consist of a group of people who share a concern or a passion for something they do and learn how to do it better as they interact regularly. Normally CoP’s are rather homogeneous. Saxion institute Small Business & Retail Management (SB&RM) started a CoP with entrepreneurs September 2007. Typical in the this community, are the differences between the partners. The Community consists of students, entrepreneurs and members of an institution for higher education. They have different characteristics and they don’t share the same knowledge. Thus, building long-lasting relations can be complicated. Solid relations for longer periods are nevertheless inevitable in using CoP as a mean in an educational concept that takes approximately 4 years. After one year an evaluation took place on the main aspects of a lasting partnership. The central problem SB&RM in Deventer faces is to design the CoP in a way possible members will join and stay for a longer period and in a way it ensures entrepreneurial learning. This means important design characteristics have to be identified, and the CoP in Deventer has to be evaluated to assess whether it meets those design characteristics in an effective and efficient way. The main target of the evaluation is to determine which key factors are important to make sure continuity in partnership is assured and entrepreneurial learning is best supported. To solve the problem, an investigation on how a CoP works, what group dynamics take place, and how this can be measured has to be conducted. Furthermoreusing the CoP as a tool for entrepreneurship means key aspects of entrepreneurial learning have to be identified. After that the CoP in Deventer has to be examined on both aspects. According to literature CoP’s define themselves along three dimensions: domain (indicating what is it about), community (defining how it functions), and practice (indicating what capabilities it has produced) (Wenger, 1998). This leads to meaningful, shared and coordinated activities (Akkerman et al, 2007): Key aspects of a successful CoP lie in both hard and soft sides of creating a partnership. It means on one hand a CoP has to deal with defining their own overall vision, formulating long term goals and targets on the short term. They have to formulate how to achieve those targets and create meaningful activities (reification). On the other hand a CoP has to deal with relations, trust, norms and values (participation). Reification and participation as design characteristic can provide indicators on which the CoP in Deventer can be evaluated. A lasting partnership means joining the CoP and staying. Weick provides us with a suitable model that enables us to do research and evaluate whether the CoP in Deventer is successful or not, Weick’s model of means convergence. To effectively ensure entrepreneurial learning the process in the CoP has to provide or enable actionoriented forms through Project-based activity, accompanied by reflection, with high emotional exposure (or cognitive affection) preferably caused by discontinuities to be suitable as a tool in entrepreneurial learning. Furthermore it should be accompanied by the right preconditions to work effectively and efficiently. The evaluation of the present CoP in Deventer is done by interviewing all participants at the end of the first year of the partnership. In a structured interview, based on literature studies, all participants were separately questioned
MULTIFILE
Het plan van aanpak gepresenteerd in deze handreiking is bedoeld als leidraad voor het ontwerpen, ontwikkelen, implementeren en evalueren van verschillende Learning Communities binnen het RAAK-5 project Het Nieuwe Telen: gas erop! Het is bedoeld om zowel inzichten als instrumenten te bieden aan coördinatoren en facilitatoren voor de implementatie van de lokale Learning Communities gedurende het project. Deze handreiking is een noodzakelijke aanvulling op het project vanwege de prominente rol van Learning Communities binnen het project, maar ook omdat er geen wetenschappelijk gebaseerde ontwerpprincipes voor LC’s te vinden zijn. Er zijn veel projecten die Learning Communities uitvoeren, maar een grondige zoektocht naar literatuur en internetbronnen resulteerde niet in ontwerpprincipes.
DOCUMENT
Climate change adaptation has influenced river management through an anticipatory governance paradigm. As such, futures and the power of knowing the future has become increasingly influential in water management. Yet, multiple future imaginaries co-exist, where some are more dominant that others. In this PhD research, I focus on deconstructing the future making process in climate change adaptation by asking ‘What river imaginaries exist and what future imaginaries dominate climate change adaptation in riverine infrastructure projects of the Meuse and Magdalena river?’. I firstly explore existing river imaginaries in a case study of the river Meuse. Secondly, I explore imaginaries as materialised in numerical models for the Meuse and Magdalena river. Thirdly, I explore the integration and negotiation of imaginaries in participatory modelling practices in the Magdalena river. Fourthly, I explore contesting and alternative imaginaries and look at how these are mobilised in climate change adaptation for the Magdalena and Meuse river. Multiple concepts stemming from Science and Technology Studies and Political Ecology will guide me to theorise the case study findings. Finally, I reflect on my own positionality in action-research which will be an iterative process of learning and unlearning while navigating between the natural and social sciences.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.
The objective of DIGIREAL-XL is to build a Research, Development & Innovation (RD&I) Center (SPRONG GROUP, level 4) on Digital Realities (DR) for Societal-Economic Impact. DR are intelligent, interactive, and immersive digital environments that seamlessly integrate Data, Artificial Intelligence/Machine Learning, Modelling-Simulation, and Visualization by using Game and Media Technologies (Game platforms/VR/AR/MR). Examples of these DR disruptive innovations can be seen in many domains, such as in the entertainment and service industries (Digital Humans); in the entertainment, leisure, learning, and culture domain (Virtual Museums and Music festivals) and within the decision making and spatial planning domain (Digital Twins). There are many well-recognized innovations in each of the enabling technologies (Data, AI,V/AR). However, DIGIREAL-XL goes beyond these disconnected state-of-the-art developments and technologies in its focus on DR as an integrated socio-technical concept. This requires pre-commercial, interdisciplinary RD&I, in cross-sectoral and inter-organizational networks. There is a need for integrating theories, methodologies, smart tools, and cross-disciplinary field labs for the effective and efficient design and production of DR. In doing so, DIGIREAL-XL addresses the challenges formulated under the KIA-Enabling Technologies / Key Methodologies for sectoral and societal transformation. BUas (lead partner) and FONTYS built a SPRONG group level 4 based on four pillars: RD&I-Program, Field Labs, Lab-Infrastructure, and Organizational Excellence Program. This provides a solid foundation to initiate and execute challenging, externally funded RD&I projects with partners in SPRONG stage one ('21-'25) and beyond (until' 29). DIGIREAL-XL is organized in a coherent set of Work Packages with clear objectives, tasks, deliverables, and milestones. The SPRONG group is well-positioned within the emerging MINDLABS Interactive Technologies eco-system and strengthens the regional (North-Brabant) digitalization agenda. Field labs on DR work with support and co-funding by many network organizations such as Digishape and Chronosphere and public, private, and societal organizations.