For delayed and long-term students, the education process is often a lonely journey. The main conclusion of this research is that learning should not be an individual process of the student connected to one lecturer, but rather a community where learning is a collective journey. The social interaction between lecturers, groups of delayed students and other actors is an important engine for arriving at the new knowledge, insights and expertise that are important to reach their final level. This calls for the design of social structures and the collaboration mechanism that enable the bonding of all members in the community. By making use of this added value, new opportunities for the individual are created that can lead to study success. Another important conclusion is that in the design and development of learning communities, sufficient attention must be paid to cultural characteristics. Students who delay are faced with a loss of self-efficacy and feelings of shame and guilt. A learning community for delayed students requires a culture in which students can turn this experience into an experience of self-confidence, hope and optimism. This requires that the education system pays attention to language use, symbols and rituals to realise this turn. The model ‘Building blocks of a learning environment for long-term students’ contains elements that contribute to the study success of delayed and long-term students. It is the challenge for every education programme to use it in an appropriate way within its own educational context. Each department will have to explore for themselves how these elements can be translated into the actions, language, symbols and rituals that are suitable for their own target group.
This paper examines how the learning environment in primary education can be enhanced by stimulating the use of innovative ICT applications. In particular, this discussion focuses on mind tools as a means of leveraging ICT for the development of cognitive skills. The stimulating effect of mind tools on the thinking skills and thinking attitudes of students is examined. The various types of mind tools and a number of specific examples are closely examined. We consider how mind tools can contribute to the establishment of an ICT-rich learning environment within the domain of technology education in primary schools. We illustrate two specific applications of such mind tools and discuss how these contribute to the development of thinking skills.
Nowadays, digital tools for mathematics education are sophisticated and widely available. These tools offer important opportunities, but also come with constraints. Some tools are hard to tailor by teachers, educational designers and researchers; their functionality has to be taken for granted. Other tools offer many possible educational applications, which require didactical choices. In both cases, one may experience a tension between a teacher’s didactical goals and the tool’s affordances. From the perspective of Realistic Mathematics Education (RME), this challenge concerns both guided reinvention and didactical phenomenology. In this chapter, this dialectic relationship will be addressed through the description of two particular cases of using digital tools in Dutch mathematics education: the introduction of the graphing calculator (GC), and the evolution of the online Digital Mathematics Environment (DME). From these two case descriptions, my conclusion is that students need to develop new techniques for using digital tools; techniques that interact with conceptual understanding. For teachers, it is important to be able to tailor the digital tool to their didactical intentions. From the perspective of RME, I conclude that its match with using digital technology is not self-evident. Guided reinvention may be challenged by the rigid character of the tools, and the phenomena that form the point of departure of the learning of mathematics may change in a technology-rich classroom.
LINK