In this work, a feasible and low-cost approach is proposed for level measurement in multiphase systems inside tanks used for petroleum-derived oil production. The developed level sensor system consisted of light-emitting diodes (LEDs), light-dependent resistor (LDR), and a low-cost microprocessor. Two different types of oil were tested: AW460 and AW68. Linear regression (LR) was applied for 11 scenarios and showed a direct correlation between the level of oil and the sensor’s output. The measurement with AW460 oil presented a perfect linear behavior, while for AW68, a higher standard deviation was obtained justifying the occurrence of the nonlinearity in several scenarios. In order to overcome the nonlinear effect, two machine learning (ML) techniques were tested: K-nearest neighbors regression (KNNR) and multilayer perceptron (MLP) neural network regression. The highest correlation coefficient ( R2 ) and the lowest root mean squared error (RMSE) were obtained for AW68 with MLP. Therefore, MLP was used for regression (level prediction for water, oil, and emulsion) as well as classification (identify the type of oil in the reservoir) simultaneously. The suggested network exhibited a high accuracy for oil identification (99.801%) and improved linear performance in regression ( R2 = 0.9989 and RMSE = 0.065).
Metadateren van bewegende beelden, een gat in de markt voor de slimme catalogiseerder? Waarom ook niet? In de toekomst zijn we nog veel meer dan nu visueel georiënteerd, en de computer kan geen beelden 'zien'. Of toch?
In recent decades, the number of cases of knee arthroplasty among people of working age has increased. The integrated clinical pathway ‘back at work after surgery’ is an initiative to reduce the possible cost of sick leave. The evaluation of this pathway, like many clinical studies, faces the challenge of small data sets with a relatively high number of features. In this study, we investigate the possibility of identifying features that are important in determining the duration of rehabilitation, expressed in the return-to-work period, by using feature selection tools. Several models are used to classify the patient’s data into two classes, and the results are evaluated based on the accuracy and the quality of the ordering of the features, for which we introduce a ranking score. A selection of estimators are used in an optimization step, reorganizing the feature ranking. The results show that for some models, the proposed optimization results in a better ordering of the features. The ordering of the features is evaluated visually and identified by the ranking score. Furthermore, for all models, higher accuracy, with a maximum of 91%, is achieved by applying the optimization process. The features that are identified as relevant for the duration of the return-to-work period are discussed and provide input for further research.