This study addresses the burgeoning global shortage of healthcare workers and the consequential overburdening of medical professionals, a challenge that is anticipated to intensify by 2030 [1]. It explores the adoption and perceptions of AI-powered mobile medical applications (MMAs) by physicians in the Netherlands, investigating whether doctors discuss or recommend these applications to patients and the frequency of their use in clinical practice. The research reveals a cautious but growing acceptance of MMAs among healthcare providers. Medical mobile applications, with a substantial part of IA-driven applications, are being recognized for their potential to alleviate workload. The findings suggest an emergent trust in AI-driven health technologies, underscored by recommendations from peers, yet tempered by concerns over data security and patient mental health, indicating a need for ongoing assessment and validation of these applications
By applying Axiomatic Design, a Smart Medical Cast was developed to provide patients, who are suffering from forearm fractures, with a personalized healing process. The device monitors the overall healing status and three complications, which are: Muscle Atrophy, Compartment Syndrome, and Deep Vein Thrombosis. In the conceptual phase, desk research has been performed to find biomarkers that correlate with the monitored processes. Per biomarker, a measuring principle has been designed and these combined formed the design of the smart medical cast. Following the design phase, two tests were performed on healthy individuals to measure the robustness in a real application. The first test focused on correctly measuring the biomarkers and further specifying the sensor specifications. For the second test, a new prototype was used to determine correlations between the measured data and the monitored process and the impact of application during the casting process. The test results show that the measuring system can measure the biomarkers within the expected range, except for bone density. No significant impact on the casting process was measured. The Smart Medical Cast has only been evaluated in situations without a fracture, the next step will be to test the measurables in an environment with a fracture
In Malaysia, a country that ranks among the world's most recognised medical tourism destinations, medical tourism is identified as a potential economic growth engine for both medical and non-medical sectors. A state-level analysis of economic impacts is important, given differences between states in economic profiles and numbers, origins, and expenditure of medical tourists. We applied input-output (I-O) analysis, based on state-specific I-O data and disaggregated foreign patient data. The analysis includes nine of Malaysia's states. In 2007, these states were visited by 341,288 foreign patients, who generated MYR1,313.4m ($372.3m) output, MYR468.6m ($132.8m) in value added, and over 19,000 jobs. Impacts related to non-medical expenditure are more substantial than impacts related to medical expenditure, and indirect impacts are a substantial part of total impacts. We discuss management and policy responses and formulate recommendations for data collection.
LINK
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
In the Netherlands approximately 2 million inhabitants have one or more disabilities. However, just like most people they like to travel and go on holiday.In this project we have explored the customer journey of people with disabilities and their families to understand their challenges and solutions (in preparing) to travel. To get an understanding what ‘all-inclusive’ tourism would mean, this included an analysis of information needs and booking behavior; traveling by train, airplane, boat or car; organizing medical care and; the design of hotels and other accommodations. The outcomes were presented to members of ANVR and NBAV to help them design tourism and hospitality experiences or all.
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is currently used as an important tool for biomedical applications (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this technology and its applications was recently published in a special edition of the Journal of Aerosol Sciences [1]. Even though EHDA is already applied in many different industrial processes, there are not many controlling tools commercially available which can be used to remotely operate the system as well as identify some spray characteristics, e.g. droplet size, operational mode, droplet production ratio. The AECTion project proposes the development of an innovative controlling system based on the electrospray current, signal processing & control and artificial intelligence to build a non-visual tool to control and characterize EHDA processes.