In de afgelopen jaren hebben technologische ontwikkelingen de aard van dienstverlening ingrijpend veranderd (Huang & Rust, 2018). Technologie wordt steeds vaker ingezet om menselijke servicemedewerkers te vervangen of te ondersteunen (Larivière et al., 2017; Wirtz et al., 2018). Dit stelt dienstverleners in staat om meer klanten te bedienen met minder werknemers, waardoor de operationele efficiëntie toeneemt (Beatson et al., 2007). Deze operationele efficiëntie leidt weer tot lagere kosten en een groter concurrentievermogen. Ook voor klanten kan de inzet van technologie voordelen hebben, zoals betere toegankelijkheid en consistentie, tijd- en kostenbesparing en (de perceptie van) meer controle over het serviceproces (Curran & Meuter, 2005). Mede vanwege deze beoogde voordelen is de inzet van technologie in service-interacties de afgelopen twee decennia exponentieel gegroeid. De inzet van zogenaamde conversational agents is een van de belangrijkste manieren waarop dienstverleners technologie kunnen inzetten om menselijke servicemedewerkers te ondersteunen of vervangen (Gartner, 2021). Conversational agents zijn geautomatiseerde gesprekspartners die menselijk communicatief gedrag nabootsen (Laranjo et al., 2018; Schuetzler et al., 2018). Er bestaan grofweg drie soorten conversational agents: chatbots, avatars, en robots. Chatbots zijn applicaties die geen virtuele of fysieke belichaming hebben en voornamelijk communiceren via gesproken of geschreven verbale communicatie (Araujo, 2018;Dale, 2016). Avatars hebben een virtuele belichaming, waardoor ze ook non-verbale signalen kunnen gebruiken om te communiceren, zoals glimlachen en knikken (Cassell, 2000). Robots, ten slotte, hebben een fysieke belichaming, waardoor ze ook fysiek contact kunnen hebben met gebruikers (Fink, 2012). Conversational agents onderscheiden zich door hun vermogen om menselijk gedrag te vertonen in service-interacties, maar op de vraag ‘hoe menselijk is wenselijk?’ bestaat nog geen eenduidig antwoord. Conversational agents als sociale actoren Om succesvol te zijn als dienstverlener, is kwalitatief hoogwaardige interactie tussen servicemedewerkers en klanten van cruciaal belang (Palmatier et al., 2006). Dit komt omdat klanten hun percepties van een servicemedewerker (bijv. vriendelijkheid, bekwaamheid) ontlenen aan diens uiterlijk en verbale en non verbale gedrag (Nickson et al., 2005; Specht et al., 2007; Sundaram & Webster, 2000). Deze klantpercepties beïnvloeden belangrijke aspecten van de relatie tussen klanten en dienstverleners, zoals vertrouwen en betrokkenheid, die op hun beurt intentie tot gebruik, mond-tot-mondreclame, loyaliteit en samenwerking beïnvloeden (Hennig-Thurau, 2004; Palmatier et al., 2006).Er is groeiend bewijs dat de uiterlijke kenmerken en communicatieve gedragingen (hierna: menselijke communicatieve gedragingen) die percepties van klanten positief beïnvloeden, ook effectief zijn wanneer ze worden toegepast door conversational agents (B.R. Duffy, 2003; Holtgraves et al., 2007). Het zogenaamde ‘Computers Als Sociale Actoren’ (CASA paradigma vertrekt vanuit de aanname dat mensen de neiging hebben om onbewust sociale regels en gedragingen toe te passen in interacties met computers, ondanks het feit dat ze weten dat deze computers levenloos zijn (Nass et al., 1994). Dit kan verder worden verklaard door het fenomeen antropomorfisme (Epley et al., 2007; Novak & Hoffman, 2019). Antropomorfisme houdt in dat de aanwezigheid van mensachtige kenmerken of gedragingen in niet-menselijke agenten, onbewust cognitieve schema's voor menselijke interactie activeert (Aggarwal & McGill, 2007; M.K. Lee et al., 2010). Door computers te antropomorfiseren komen mensen tegemoet aan hun eigen behoefte aan sociale verbinding en begrip van de sociale omgeving (Epley et al., 2007; Waytz et al., 2010). Dit heeft echter ook tot gevolg dat mensen cognitieve schema’s voor sociale perceptie toepassen op conversational agents.
In deze rede zal ik vanuit het heden via de theorie en de wijze waarop theorie en praktijk verbonden zijn, een sprong maken naar de toekomst. Eerst zal ik een korte uiteenzetting geven over de positie van Nederland op het gebied van innovatie en ondernemerschap. Daarna zal ik een schets geven van het theoretische kader en de paradigma´s die naar mijn mening denken en doen in relatie tot innovatie en ondernemerschap bepalen. Tot slot wil ik een brug slaan naar de toekomst en de rol die het lectoraat Ondernemen en Innoveren (O&I) zal spelen om vernieuwing tot stand te brengen en het concept ondernemend innoveren vorm te geven.
MULTIFILE
Theorieën die betrekking hebben op de kwaliteit van producten, processen, systemen en organisaties (systeemtechnische aspecten) geven geen of onvoldoende antwoord op vragen en problemen die betrekking hebben op de rol van de ‘factor mens’ in kwaliteitsmanagement. Omdat daar wel behoefte aan is, zijn de afgelopen jaren nieuwe theorieën ontwikkeld die wel oplossingsstrategieën bieden. Dit zijn kwaliteitsparadigma’s (beheersing en betrokkenheid), kwaliteitsscholen (empirische, normatieve en reflectieve school) en de drie kwaliteitsdimensies (professionele, organisatorische en relationele kwaliteit). In alle drie concepten zijn systeemtechnische (object/proces/norm) en sociaaldynamische (mens) aspecten gecombineerd. Betrokkenheid, reflectieve school en relationele kwaliteit zullen bepalend zijn voor het toekomstige kwaliteitsmanagement waarin de human factor een steeds belangrijker plaats gaat innemen.
In het project “ADVICE: Advanced Driver Vehicle Interface in a Complex Environment” zijn belangrijke onderzoeksresultaten geboekt op het gebied van het schatten van de toestand en werklast van een voertuigbestuurder om hiermee systemen die informatie geven aan de bestuurder adaptief te maken om zo de veiligheid te verhogen. Een voorbeeld is om minder belangrijke informatie van een navigatiesysteem te onderdrukken, zolang de bestuurder een hoge werklast ervaart voor het autorijden en/of belangrijke informatie juist duidelijker weer te geven. Dit leidt tot een real-time werklast schatter die geografische informatie meeneemt, geavaleerd in zowel een rijsimulator als op de weg. In de ontwikkeling naar automatisch rijden is de veranderende rol van de bestuurder een belangrijk (veiligheids) onderwerp, welke sterk gerelateerd is aan de werklast van de bestuurder. Indien rijtaken meer geautomatiseerd worden, wijzigt de rol van actieve bestuurder meer naar supervisie van de rijtaken, maar tevens met de eis om snel en gericht in te grijpen indien de situatie dit vereist. Zowel deze supervisie als interventietaak zijn geen eenvoudige taken met onderling een sterk verschillende werklast (respectievelijk lage en (zeer) hoge werklast). Of een goede combinatie inclusief snelle overgangen tussen deze twee hoofdtaken veilig mogelijk is voor een bestuurder en hoe dit dan het beste ondersteund kan worden, is een belangrijk onderwerp van huidig onderzoek. De ontwikkeling naar autonoom rijden verandert niet alleen de rol van de bestuurder, maar zal ook de eisen aan het rijgedrag van het voertuig beïnvloeden, de voertuigdynamica. Voor de actieve bestuurder kunnen snelle voertuigreacties op bestuurdersinput belangrijk zijn, zeker voor een ‘sportief’ rijdende bestuurder. Indien dit voertuig ook automatische rijtaken moet uitvoeren, kan juist een meer gelijkmatig rijgedrag gewenst zijn, zodat de bestuurder ook andere taken kan uitvoeren. Dit stelt eisen aan vertaling van (automatische) input naar voertuigreactie en aan de voertuigdynamica. Mogelijk wil zelfs een sportieve bestuurder een meer comfortabel voertuiggedrag tijdens automatisch rijden. Eveneens voor deze twee voertuigtoestanden, menselijke of automatische besturing, moet gezocht worden naar een goede combinatie inclusief (veilige) overgangen tussen deze twee toestanden. Hierbij speelt de werklast en toestand van de bestuurder een doorslaggevende rol. In de geschetste ontwikkelingen in automatisch rijden kunnen de onderzoeksresultaten van ADVICE een goede ondersteuning bieden. Veel van deze ontwikkelingen worstelen met het schatten van de werklast van de bestuurder als cruciaal (veiligheids) aspect van automatisch rijden. De ADVICE resultaten zijn echter gepresenteerd voor beperkt publiek en gepubliceerd op conferenties, waarvan de artikelen veelal slechts tegen betaling toegankelijk zijn. Daarnaast zijn dergelijke artikelen gelimiteerd in aantal pagina’s waardoor de over te dragen informatie beperkt is. Om een betere doorwerking van ADVICE aan ‘iedereen’ te realiseren en tevens de mogelijkheden hiervan in de toekomst van automatisch rijden te plaatsen, willen wij top-up gebruiken om hierover een artikel te schrijven en dit in een peer-reviewed Open Access tijdschrift online toegankelijk te maken. Hierdoor wordt de informatie voor iedereen, gratis toegankelijk (open access), is de inhoud uitgebreider aan te geven (tijdschriftartikel) en is de inhoud en kwaliteit goed en relevant voor het vakgebied (peer-reviewed).
In de schoonmaakbranche is de werkdruk hoog . Hierdoor worden gebouwen dagelijks niet goed genoeg schoongemaakt. Er heerst krapte op de arbeidsmarkt. Schoonmaakwerk is vooral handmatig werk en is ook zwaar werk. De schoonmaakbranche is dringend op zoek naar technologische oplossingen die het werk in de toekomst kunnen verlichten. Eén van die technologische oplossingen is de introductie van schoonmaakrobots , die op dit moment mondjesmaat op de markt worden gebracht. Schoonmaakorganisaties weten nog niet goed hoe deze robots efficiënt in te zetten, het vergt nog veel tijd om ze te kunnen gebruiken en schoonmaakmedewerkers zijn terughoudend om ermee te werken. Het project Assisted Cleaning Robots (ACR) richt zich op de volgende onderzoeksvraag: “hoe integreer je robottechnologie in het werkproces in de schoonmaakbranche, zodat een robot enerzijds zo optimaal mogelijk het werkproces ondersteunt, en anderzijds zo optimaal mogelijk met de mens samenwerkt.” Wat hierin optimaal is en hoe dit gemeten kan worden, is onderdeel van het onderzoek en is afhankelijk van de technologische mogelijkheden, de mensen die er mee werken, en de werkomgeving. In dit project werken Fontys Hogeschool Engineering, Fontys Hogeschool Techniek & Logistiek en de Haagse Hogeschool samen met schoonmaakorganisaties CSU en Hectas en andere bedrijven (toeleveranciers van schoonmaakrobots als ontwikkelaars), nationaal samenwerkingsverband Holland Robotics en brancheorganisatie Schoonmakend Nederland. Dit project kent een looptijd van twee jaar en gaat van start op 1 november 2021. In dit project worden nieuwe schoonmaakprocessen gedefinieerd en wordt op basis van deze processen technologie ontwikkeld (waar doorgaans eerst een nieuw product wordt ontwikkeld en daarna pas gekeken naar hoe dit product in te zetten). In dit project staat de mens die met de technologie in het proces moet gaan werken centraal. De technologie en het proces worden gevalideerd middels praktijktests met de betrokken schoonmaakorganisaties, op representatieve locaties. Hieruit worden lessen getrokken voor verbeteringen.
“KITT, activate super pursuit mode!” Actiefilms zijn kenmerkend vanwege de hoeveelheid stunts die erin voorkomen. Auto’s die crashen of elkaar net missen ontbreken hierin niet. Momenteel worden de stunts nog gedaan door getrainde stuntprofessionals wat de nodige risico’s met zich meebrengt. Naast de veiligheidsrisico’s spelen inschattingsfouten en menselijke communicatie een grote rol. Daarom is vanuit het mkb actief in de filmindustrie de vraag ontstaan hoe (gevaarlijke) stunts met voertuigen & beweegbare objecten veiliger, accurater en nauwkeuriger uitgevoerd kunnen worden. In deze KIEM worden de mogelijkheden van technologische toepassingen vanuit de Mobiliteit / Automotive Branche, zoals teleoperatie (het op afstand besturen van een voertuig) en autonome applicaties voor het mkb actief in de filmindustrie onderzocht. De vraag die centraal staat luidt daarom: “Wat is de potentie van technologieën als teleoperatie en autonomie binnen de Nederlandse Filmindustrie voor het uitvoeren van gevaarlijke en nauwkeurige voertuigstunts?” De vraag wordt beantwoord door zowel op schaal als op 1:1 voertuigen teleoperatie & autonome applicaties te ontwikkelen voor een specifieke stunt. Door te werken aan 1 scenario, te weten het net missen van twee voertuigen die op een kruispunt afrijden, bouwen we kennis op over de geschiktheid van teleoperatie en autonomie voor het mkb in de stuntindustrie. De resultaten van deze KIEM zullen worden vastgelegd en gepubliceerd en kunnen de basis vormen voor vervolg onderzoeken zoals een RAAK-mkb onderzoek.