There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil‐borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below‐ground environment has generally been treated as a ‘black box’ in biodiversity experiments, leaving these fungi unidentified. Using next generation sequencing and pathogenicity assays, we analysed the community composition of root‐associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil‐borne fungi, plant diversity and productivity. Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species‐specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity. Our work provides strong evidence for host specificity and negative density‐dependent effects of root‐associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity‐ecosystem functioning relationships.
LINK
Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the At CHR12/ 23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato ( Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated Sl CHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of Sl CHR1 show reduced growth in all developmental stages of tomato. This confirms that Sl CHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non- GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.
Diverse partijen, zowel marktpartijen als kennisinstellingen, gaan in 2020 samenwerken in een pilot om te toetsen in hoeverre zij de plant kardoen (familie van de artisjok distel) in haar volle potentieel kunnen gebruiken voor diverse commerciële doeleinden, zoals bloemen, voedsel, composiet en een lamp. Er wordt in deze pilot onderzoek gedaan naar: - Gebruik van reststromen als bodemverbeteraar - Teelt van kardoen - Verwerking van kardoen
Aanleiding: De belangstelling voor gezonde en veilige voeding is groot. Bij de gezondheidseffecten van voeding spelen de darmen een cruciale rol. Verschillende soorten bedrijven hebben behoefte aan natuurgetrouwe testmodellen om de effecten van voeding op de darmen te bestuderen. Ze zijn vooral op zoek naar modellen waarvan de uitkomsten direct vertaalbaar zijn naar het doelorganisme (de mens of bijvoorbeeld het varken) en die niet gebruikmaken van kostbare en maatschappelijke beladen dierproeven. Doelstelling Het project 2-REAL-GUTS heeft als doel om twee innovatieve dierproefvrije darmmodellen geschikt te maken voor onderzoek naar voedingsconcepten en -ingrediënten. De twee darmmodellen die worden toegepast zijn darmorganoïden, minidarmorgaantjes bestaande uit stamcellen, en darmexplants bestaande uit hele stukjes darm verkregen uit relevante organismen. Beide modellen hebben potentieel heel uitgebreide toepassingsmogelijkheden en hebben ook grote voordelen ten opzichte van de huidige veelgebruikte cellijnen, omdat ze meerdere in de darm aanwezige celtypen bevatten en uit verschillende specifieke darmregio's te verkrijgen zijn. Gezamenlijk gaan de partners werken aan: 1) het aanpassen van de kweekomstandigheden zodat darmmodellen geschikt worden om de vragen van partners te beantwoorden; 2) het vaststellen van de toepassingsmogelijkheden van de darmmodellen door verschillende stoffen en producten te testen. Beoogde resultaten Kennisconferenties, publicaties en exploitatie van de modellen zullen zorgen voor het verspreiden van de opgedane kennis. Omdat het project gebruikmaakt van moderne, op de toekomst gerichte laboratoriumtechnieken (kweekmethoden met stamcellen en vitaal weefsel, moleculaire analyses en microscopie), leent het zich uitstekend om geïmplementeerd te worden in het hbo-onderwijs. Als spin-off zal het project dan ook voorzien in een specifieke, voor Nederland unieke hbo-minor op het gebied van stamcel- en aanverwante technologie (zoals organ-on-a-chiptechnologie).
Hout is een veelgebruikt duurzaam (bouw)materiaal met belangrijke ecologische voordelen: Het is hernieuwbaar en fungeert als CO2-opslag. Een nadeel van hout is echter dat het alleen met verspanende technieken (draaien, frezen, zagen) verwerkt kan worden, hetgeen veel houtafval veroorzaakt. Daarbij wordt het afval en hout dat ongeschikt is als constructiemateriaal slechts ingezet in laagwaardige toepassingen of verbrand. Afgezien van het gebruik van houtvezels als filler materiaal bij 3D-printen van kunststoffen, wordt 3D-printen van hout(afval) nog niet toegepast, hoewel dit wel mogelijk is: Alle plantaardige materialen bevatten natuurlijke polymeren, lignine en cellulose, welke voor mechanische eigenschappen zorgen. Door deze polymeren uit plantaardige materialen te scheiden kunnen deze, met behulp van enkele additieven, in een thermoplastisch verwerkbaar materiaal worden omgezet dat extrudeerbaar is. Door de locatie van de extruder te manipuleren en hier laagsgewijs een object mee te maken ontstaat een additive manufacturing (AM) proces: een 3D ‘hout’printer! Naast materiaalefficiëntie biedt AM unieke voordelen, namelijk grote vormvrijheid en de mogelijkheid van seriematige enkelstuksproductie. Indien gecombineerd met de ontwerptechnieken parametrisch en topologische ontwerpen zijn vergaande optimalisaties van materiaalgebruik en productvariaties mogelijk. Met AM ontstaat zodoende een enorm nieuw spectrum van hoogwaardige toepassingsmogelijkheden voor hout(afval). In dit projectvoorstel wordt via de driehoek van ‘materiaal – proces – toepassing’ simultaan onderzoek gedaan naar: (1) Geschikte combinaties (blends) van cellulose en lignine om mee te kunnen extruderen; (2) Het ontwikkelen van een 3D-printproces en setup voor het verwerken van deze materiaal-combinaties; (3) Het identificeren van geschikte toepassingen. Geschikte toepassingen worden beïnvloed door materiaaleigenschappen en het printproces. Beide aspecten hebben ook onderlinge wisselwerking. Daarom wordt binnen casestudies van mogelijke toepassingen de onderlinge invloed integraal onderzocht. De doelstelling is daarbij om een werkende 3D ‘hout’printer met een werkend receptuur te ontwikkelen en de haalbaarheid van innovatieve, duurzame en voor de markt relevante toepassingen aan te tonen middels cases.