We developed an application which allows learners to construct qualitative representations of dynamic systems to aid them in learning subject content knowledge and system thinking skills simultaneously. Within this application, we implemented a lightweight support function which automatically generates help from a norm-representation to aid learners as they construct these qualitative representations. This support can be expected to improve learning. Using this function it is not necessary to define in advance possible errors that learners may make and the subsequent feedback. Also, no data from (previous) learners is required. Such a lightweight support function is ideal for situations where lessons are designed for a wide variety of topics for small groups of learners. Here, we report on the use and impact of this support function in two lessons: Star Formation and Neolithic Age. A total of 63 ninth-grade learners from secondary school participated. The study used a pretest/intervention/post-test design with two conditions (no support vs. support) for both lessons. Learners with access to the support create better representations, learn more subject content knowledge, and improve their system thinking skills. Learners use the support throughout the lessons, more often than they would use support from the teacher. We also found no evidence for misuse, i.e., 'gaming the system', of the support function.
Background: Peer review is at the heart of the scientific process. With the advent of digitisation, journals started to offer electronic articles or publishing online only. A new philosophy regarding the peer review process found its way into academia: the open peer review. Open peer review as practiced by BioMed Central (BMC) is a type of peer review where the names of authors and reviewers are disclosed and reviewer comments are published alongside the article. A number of articles have been published to assess peer reviews using quantitative research. However, no studies exist that used qualitative methods to analyse the content of reviewers’ comments. Methods: A focused mapping review and synthesis (FMRS) was undertaken of manuscripts reporting qualitative research submitted to BMC open access journals from 1 January – 31 March 2018. Free-text reviewer comments were extracted from peer review reports using a 77-item classification system organised according to three key dimensions that represented common themes and sub-themes. A two stage analysis process was employed. First, frequency counts were undertaken that allowed revealing patterns across themes/sub-themes. Second, thematic analysis was conducted on selected themes of the narrative portion of reviewer reports. Results: A total of 107 manuscripts submitted to nine open-access journals were included in the FMRS. The frequency analysis revealed that among the 30 most frequently employed themes “writing criteria” (dimension II) is the top ranking theme, followed by comments in relation to the “methods” (dimension I). Besides that, some results suggest an underlying quantitative mindset of reviewers. Results are compared and contrasted in relation to established reporting guidelines for qualitative research to inform reviewers and authors of frequent feedback offered to enhance the quality of manuscripts. Conclusions: This FMRS has highlighted some important issues that hold lessons for authors, reviewers and editors. We suggest modifying the current reporting guidelines by including a further item called “Degree of data transformation” to prompt authors and reviewers to make a judgment about the appropriateness of the degree of data transformation in relation to the chosen analysis method. Besides, we suggest that completion of a reporting checklist on submission becomes a requirement.
MULTIFILE
Learning by creating qualitative representations is a valuable approach to learning. However, modelling is challenging for students, especially in secondary education. Support is needed to make this approach effective. To address this issue, we explore automated support provided to students while they create their qualitative representation. This support is generated form a reference model that functions as a norm. However, the construction of a reference models is still a challenge. In this paper, we present the reference model that we have created to support students in learning about the melatonin regulation in the context of the biological clock.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
The HAS professorship Future Food Systems is performing applied research with students and external partners to transform our food system towards a more sustainable state. In this research it is not only a question of what is needed to achieve this, but also how and with whom. The governance of our food system needs rethinking to get the transformative momentum going in a democratic and constructive manner. Building on the professorship’s research agenda and involvement in the transdisciplinary NWA research project, the postdoc will explore collective ownership and inclusive participation as two key governance concepts for food system transformation. This will be done in a participatory manner, by learning from and with innovative bottom-up initiatives and practitioners from the field. By doing so, the postdoc will gain valuable practical insights that can aid to new approaches and (policy) interventions which foster a sustainable and just food system in the Netherlands and beyond. A strong connection between research and education is created via the active research involvement of students from different study programs, supervised by the postdoc (Dr. B. van Helvoirt). The acquired knowledge is embedded in education by the postdoc by incorporating it into HAS study program curricula and courses. In addition, it will contribute to the further professional development of qualitative research skills among HAS students and staff. Through scientific, policy and popular publications, participation in (inter)national conferences and meetings with experts and practitioners, the exposure and network of the postdoc and HAS in the field of food systems and governance will be expanded. This will allow for the setting up of a continuous research effort on this topic within the professorship via follow-up research with knowledge institutes, civic society groups and partners from the professional field.