Traditional information systems for crisis response and management are centralized systems with a rigid hierarchical structure. Here we propose a decentralized system, which allows citizens to play a significant role as information source and/or as helpers during the initial stages of a crisis. In our approach different roles are assigned to citizens. To be able to designate the different roles automatically our system needs to generate appropriate questions. On the basis of information theory and a restricted role ontology we formalized the process of question generation. Three consecutive experiments were conducted with human users to evaluate to what extent the questioning process resulted in appropriate role determination. The result showed that the mental model of human users does not always comply with the formal model underpinning the questions generation process.
ABSTRACT This study investigates how perceptions of radicalisation and co-occurring mental health issues differ between mental health care and the security domain, and how these perceptions affect intersectoral collaboration. It is generally thought that intersectoral collaboration is a useful strategy for preventing radicalisation and terrorism, especially when it concerns radicalised persons with mental health issues. It is not clear, however, what perceptions professionals have of radicalisation and collaboration with other disciplines. Data was obtained from focus groups and individual interviews with practitioners and trainers from mental health care and the security domain in the Netherlands. The results show a lack of knowledge about radicalisation in mental health care, whereas in the security domain, there is little understanding of mental health issues. This leads to a mad-bad dichotomy which has a negative effect on collaboration and risk management. Improvement of the intersectoral collaboration by cross-domain familiarization, and strengthening of trust and mutual understanding, should begin with the basic training of professionals in both domains. The Care and Safety Houses in the Netherlands offer a sound base for intersectoral collaboration. Future professionals from different domains ought to be familiarized with each other’s possibilities, limitations, tasks, and roles.
It has become a topic at Dutch educational institutes to feel not only responsible for improvement of theoretical and practical skills, but also of 'competences' in a broader sense. The curriculum of the Electrical and Electronic (E&E) Department has been changed enormously in the past decade. Fewer lessons and many more projects were introduced. We have choosen to let the students work on competences especially in the projects they are in. With the introduction of competences and the aid of a student portfolio we have given the tools to the students to improve their competences in a broader way. At the E &E department we introduced two different ways of working on competences. In the first years of their study students choose different roles in our projects every time. We have described all the roles and the related tasks for each specific role. While working on a role, the students indirectly work on different competences. This way of working inforces a broader educational level (a student shouldn t work on things he already knows or is able to handle) and the hitch hiking behaviour is banned out. Students now do take responsibility while contributing to the project teams. Inquiries amongst the students confirm these results. The second way is working on the specific competences in their traineeship and thesis work in the last part of their study. This will be introduced in autumn 2004 in the E&E department. In this paper we will show you how we are implementing the integration of competences, like the E&E department did, for IPD projects as well. This implementation is planned to start in autumn 2004.
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.
Kwaliteitscontroles in productieprocessen in de maakindustrie zijn vaak destructief en daarmee niet duurzaam. In dit project onderzoeken we hoe door toepassing van process mining op real time sensor data de kwaliteitscontrole al tijdens het productieproces kan worden uitgevoerd en potentiële problemen vroegtijdig ontdekt.
Kwaliteitscontroles in productieprocessen in de maakindustrie zijn vaak destructief en daarmee niet duurzaam. In dit project onderzoeken we hoe door toepassing van process mining op real time sensor data de kwaliteitscontrole al tijdens het productieproces kan worden uitgevoerd en potentiële problemen vroegtijdig ontdekt.Doel Het doel van het project is om op basis van realtime data de kwaliteit van het eindproduct van het productieproces te kunnen voorspellen en waar nodig het productieproces bij te sturen. Hiermee kan de industrie duurzamer werken. Resultaten Het project levert een AI software toolkit op met methoden en algoritmen voor toepassing in de productieprocessen in verschillende industrieën. Looptijd 15 januari 2021 - 15 november 2024 Aanpak Nieuwe process mining algoritmes worden ontwikkeld en getoetst in case studies bij verschillende industriële bedrijven. Op basis van de uitkomsten wordt een software toolkit ontwikkeld voor toepassing in de praktijk. Impact op onderwijs Studenten van instituut voor ICT gaan, samen met studenten van TU Eindhoven, cases studies uitvoeren bij verschillende industrieën. Cofinanciering Het project wordt gefinancierd door NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek).