In this paper we explore the influence of the physical and social environment (the design space) son the formation of shared understanding in multidisciplinary design teams. We concentrate on the creative design meeting as a microenvironment for studying processes of design communication. Our applied research context entails the design of mixed physical–digital interactive systems supporting design meetings. Informed by theories of embodiment that have recently gained interest in cognitive science, we focus on the role of interactive “traces,” representational artifacts both created and used by participants as scaffolds for creating shared understanding. Our research through design approach resulted in two prototypes that form two concrete proposals of how the environment may scaffold shared understanding in design meetings. In several user studies we observed users working with our systems in natural contexts. Our analysis reveals how an ensemble of ongoing social as well as physical interactions, scaffolded by the interactive environment, grounds the formation of shared understanding in teams. We discuss implications for designing collaborative tools and for design communication theory in general.
MULTIFILE
Abstract Despite the numerous business benefits of data science, the number of data science models in production is limited. Data science model deployment presents many challenges and many organisations have little model deployment knowledge. This research studied five model deployments in a Dutch government organisation. The study revealed that as a result of model deployment a data science subprocess is added into the target business process, the model itself can be adapted, model maintenance is incorporated in the model development process and a feedback loop is established between the target business process and the model development process. These model deployment effects and the related deployment challenges are different in strategic and operational target business processes. Based on these findings, guidelines are formulated which can form a basis for future principles how to successfully deploy data science models. Organisations can use these guidelines as suggestions to solve their own model deployment challenges.
Terms like ‘big data’, ‘data science’, and ‘data visualisation’ have become buzzwords in recent years and are increasingly intertwined with journalism. Data visualisation may further blur the lines between science communication and graphic design. Our study is situated in these overlaps to compare the design of data visualisations in science news stories across four online news media platforms in South Africa and the United States. Our study contributes to an understanding of how well-considered data visualisations are tools for effective storytelling, and offers practical recommendations for using data visualisation in science communication efforts.
LINK
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.
Intelligent technology in automotive has a disrupting impact on the way modern automobiles are being developed. New technology not only has brought complexity to already existing information in the car (digitization of driver instruments) but also brings new external information to the driver on how to optimize the driving style amongst others from the perspective of communicating with infrastructures (Vehicle to Infrastructure communication (V2I)). The amount of information that a driver has to process in modern vehicles is increasing rapidly due to the introduction of multiple displays and new external information sources. An information overload lies awaiting, yet current Human Machine Interface (HMI) designs and the corresponding legal frameworks lag behind. Currently, many initiatives (Pratijkproef Amsterdam, Concorda) are being developed with respect to V2I, amongst others with Rijkswaterstaat, North Holland and Brabant. In these initiatives, SME’s, like V-Tron, focus on the development of specific V2I hardware. Yet in the field of HMI’s these SME’s need universities (HAN University of Applied Science, Rhine Waal University of Applied Science) and industrial designers (Yellow Chess) to help them with design guidelines and concept HMI’s. We propose to develop first guidelines on possible new human-machine interfaces. Additionally, we will show the advantages of HMI’s that go further than current legal requirements. Therefore, this research will focus on design guidelines averting the information overload. We show two HMI’s that combine regular driver information with V2I information of a Green Light Optimized Speed Advise (GLOSA) use case. The HMI’s will be evaluated on a high level (focus groups and a small simulator study). The KIEM results in two publications. In a plenary meeting with experts, the guidelines and the limitations of current legal requirements will be discussed. The KIEM will lead to a new consortium to extend the research.