Na twee jaar met veel studenten te hebben gewerkt aan het project Wireless Sensortechnologie bij Calamiteiten geeft dit boek een overzicht van de activiteiten die zijn uitgevoerd. In 14 deelprojecten verspreid over vier werkpakketten hebben vooral studenten onder leiding van docenten en medewerkers van het Saxion-lectoraat Ambient Intelligence in het Kenniscentrum Design en Technologie van Saxion zich verdiept in een breed scala van onderwerpen. Na een eerste verkenning door middel van literatuurstudie en verkenning van de markt is er gewerkt aan praktische oplossingen van problemen. In de meeste gevallen zijn de oplossingen vormgegeven in echte systemen met de nodige hard-en software. Bij de testen en de experimenten werd duidelijk in hoeverre de oplossing ook echt voldeed als antwoord op de onderzoeksvraag die aan het begin gesteld werd. Alle deelprojecten zijn beschreven en aan het eind van het boek worden de belangrijkste conclusies op een rij gezet.
MULTIFILE
In a multi-sensory environment, supported with embedded computer technology, the system can capture and interpret what the users are doing and assist or collaborate with the users in real-time. Such an environment should be aware of users intentions, tasks and feelings, and allow people to interact with the environment in a natural way: by moving, pointing and gesturing. In this paper we propose an architecture for such a smart environment consisting of three modules.
In sports, inertial measurement units are often used to measure the orientation of human body segments. A Madgwick (MW) filter can be used to obtain accurate inertial measurement unit (IMU) orientation estimates. This filter combines two different orientation estimates by applying a correction of the (1) gyroscope-based estimate in the direction of the (2) earth frame-based estimate. However, in sports situations that are characterized by relatively large linear accelerations and/or close magnetic sources, such as wheelchair sports, obtaining accurate IMU orientation estimates is challenging. In these situations, applying the MW filter in the regular way, i.e., with the same magnitude of correction at all time frames, may lead to estimation errors. Therefore, in this study, the MW filter was extended with machine learning to distinguish instances in which a small correction magnitude is beneficial from instances in which a large correction magnitude is beneficial, to eventually arrive at accurate body segment orientations in IMU-challenging sports situations. A machine learning algorithm was trained to make this distinction based on raw IMU data. Experiments on wheelchair sports were performed to assess the validity of the extended MW filter, and to compare the extended MW filter with the original MW filter based on comparisons with a motion capture-based reference system. Results indicate that the extended MW filter performs better than the original MW filter in assessing instantaneous trunk inclination (7.6 vs. 11.7◦ root-mean-squared error, RMSE), especially during the dynamic, IMU-challenging situations with moving athlete and wheelchair. Improvements of up to 45% RMSE were obtained for the extended MW filter compared with the original MW filter. To conclude, the machine learning-based extended MW filter has an acceptable accuracy and performs better than the original MW filter for the assessment of body segment orientation in IMU-challenging sports situations.
Fontys University of Applied Science’s Institute of Engineering, and the Dutch Institute for Fundamental Energy Research (DIFFER) are proposing to set up a professorship to develop novel sensors for fusion reactors. Sensors are a critical component to control and optimise the unstable plasma of Tokamak reactors. However, sensor systems are particularly challenging in fusion-plasma facing components, such as the divertor. The extreme conditions make it impossible to directly incorporate sensors. Furthermore, in advanced reactor concepts, such as DEMO, access to the plasma via ports will be extremely limited. Therefore, indirect or non-contact sensing modalities must be employed. The research group Distributed Sensor Systems (DSS) will develop microwave sensor systems for characterising the plasma in a tokamak’s divertor. DSS will take advantage of recent rapid developments in high frequency integrated circuits, found, for instance, in automotive radar systems, to develop digital reflectometers. Access through the divertor wall will be achieved via surface waveguide structures. The waveguide will be printed using 3D tungsten printing that has improved precision, and reduced roughness. These components will be tested for durability at DIFFER facilities. The performance of the microwave reflectometer, including waveguides, will be tested by using it to analyse the geometry and dynamics of the Magnum PSI plasma beam. The development of sensor-based systems is an important aspect in the integrated research and education program in Electrical Engineering, where DSS is based. The sensing requirements from DIFFER offers an interesting and highly relevant research theme to DSS and exciting projects for engineering students. Hence, this collaboration will strengthen both institutes and the educational offerings at the institute of engineering. Furthermore millimeter wave (mmWave) sensors have a wide range of potential applications, from plasma characterisation (as in this proposal) though to waste separation. Our research will be a step towards realising these broader application areas.
Met het groeien van de gemiddelde levensverwachting is ook de uitdaging gegroeid om een ieder zo lang mogelijk een actieve deelnemer van de samenleving te laten zijn. Duurzame zelfstandige mobiliteit is van groot belang voor het functioneren in de samenleving (op werkplek en in thuisomgeving), draagt bij aan het sociaal functioneren en de algemene sociale cohesie. Goede controle over de (dynamische) balans speelt hierbij een grote rol, zijnde de balanshandhaving tijdens het voortbewegen, ook bij gezonde, jonge mensen een continue compromis tussen effectiviteit en veiligheid. Voor ouderen geldt dit nog sterker, daar de gevolgen van een val vele malen ernstiger zijn en ook een grote invloed hebben op de levensverwachting. Mechanismen van handhaving van de dynamische balans in praktische omstandigheden zijn nog grotendeels onbegrepen. Laboratoria staat vaak ver af van praktische condities van de alledaage praktijk. Moderne sensortechnologie opent momenteel een deur naar systematisch onderzoek naar valrisico’s in het dagelijkse leven, echter deze schiet nog te kort in haalbare accuratesse en stabiltiteit over langere metingen. In verschillende projecten wordt momenteel een nieuwe generatie van methoden onderzocht, met als centraal kenmerk hiervan dat bewegingsensoren niet meer als losse onderdelen functioneren, maar in samenhang worden gebruikt. Het kersverse INSTANT project, bijvoorbeeld, onderzoekt hoe huidige bewegingsensoren kunnen worden uitgebreid met een extra sensormodaliteit en ‘meta-datafusion’ algorithmen. Hierdoor kunnen de sensoren elkaars positie waarnemen en naar verwachting een orde meer accuraat meten op een manier die bovendien stabieler is over langere metingen. Aan iets vergelijkbaars wordt gewerkt door collega’s in Torino en Sassari, Italie, zij het met een andere type sensortechnologie. Dit KIEM project onderzoekt in hoeverre beide methoden (en beide onderzoeksclusters) elkaar kunnen versterken door intensief samen te werken. Het plaatsen van een Italiaanse onderzoeker in het INSTANT onderzoekscluster in Enschede gedurende grote delen van een jaar borgt deze samenwerking.
Rotating machinery, such as centrifugal pumps, turbines, bearings, and other critical systems, is the backbone of various industrial processes. Their failures can lead to significant maintenance costs and downtime. To ensure their continuous operation, we propose a fault diagnosis and monitoring framework that leverages the innovative use of acoustic sensors for early fault detection, especially in components less accessible for traditional vibration-based monitoring strategies. The main objective of the proposed project is to develop a fault diagnosis and monitoring framework for rotating machinery, including the fusion of acoustic sensors and physics-based models. By combining real-time monitoring data from acoustic sensors with an understanding of first principles, the framework will enable maintenance practitioners to identify and categorize different failure modes such as wear, fatigue, cavitation, reduced flow, bearing damage, impeller damage, misalignment, etc. In the initial phase, the focus will be on centrifugal pumps using the existing test set-up at the University of Twente. Sorama specializes in acoustic sensors to locate noise sources and will provide acoustic cameras to capture sound patterns related to pump deterioration during various operating conditions. These acoustic signals will then be correlated with the different failure modes and mechanisms that will be described by physics-based models, such as wear, fatigue, cavitation, corrosion, etc. Furthermore, a recently published data set by the Dynamics Based Maintenance research group that includes vibration analysis data and motor current analysis data of various fault scenarios, such as mentioned above, will be used as validation. The anticipated outcome of this project is a versatile framework for a physics-informed acoustic monitoring system. This system is designed to enhance early fault detection significantly, reducing maintenance costs and downtime across a broad spectrum of industrial applications, from centrifugal pumps to turbines, bearings, and beyond.