In het SaxShirt-project wordt een comfortabel shirt ontwikkeld waarmee fysiologische aspecten van de drager kunnen worden gemeten, zonder dat de drager daar extra inspanning voor hoeft te leveren. Dergelijke technologieën noemen we Zero Effort Technologies (Baecker, 2011). De belangrijkste fysiologische aspecten die in eerste instantie gemeten gaan worden zijn: 1) temperatuur 2) hartslag 3) ademhaling. Het project is gestart in september 2013. Het doel is om in oktober 2014 een praktisch demonstratiemodel te hebben van het shirt waarmee de mogelijkheden van de huidige technologie kunnen worden gedemonstreerd. Het is belangrijk dat het shirt niet alleen comfortabel zit, maar ook robuust en eenvoudig te wassen en reinigen is. Voorafgaand aan dit project zijn er al verscheidene onderzoeken en ontwikkelingen geweest om mogelijkheden voor het shirt te onderzoeken. Om een definitief implementatieplan te kunnen opstellen voor het huidige project, was er behoefte om nog eenmaal een korte verbredende onderzoeksfase uit te voeren. Dit rapport is het resultaat van deze fase. Na de verbredende fase zijn in november 2013 besluiten genomen en is begonnen aan de implementatie van het demonstratiemodel. De belangrijke momenten staan in onderstaand overzicht: • Oktober 2013: Start SaxShirt Project • November 2013: Vaststellen Plan van Aanpak (PvA) voor implementatie • Juli 2014: Afronden implementatie • Oktober 2014: Oplevering eerste demonstratiemodel SaxShirt Dit rapport beschrijft de state-of-the art van technieken waarmee bovenstaande fysiologische aspecten kunnen worden gemeten. Het doel van dit rapport is om een overzicht van in textiel-integreerbare fysiologische sensoren te geven. Dit overzicht dient als basis en discussiestuk voor het pan van aanpak voor de implementatie en kan worden gebruikt als introductie voor nieuwe medewerkers op het SaxShirt project.
MULTIFILE
Several studies have suggested that precision livestock farming (PLF) is a useful tool foranimal welfare management and assessment. Location, posture and movement of an individual are key elements in identifying the animal and recording its behaviour. Currently, multiple technologies are available for automated monitoring of the location of individual animals, ranging from Global Navigation Satellite Systems (GNSS) to ultra-wideband (UWB), RFID, wireless sensor networks (WSN) and even computer vision. These techniques and developments all yield potential to manage and assess animal welfare, but also have their constraints, such as range and accuracy. Combining sensors such as accelerometers with any location determining technique into a sensor fusion systemcan give more detailed information on the individual cow, achieving an even more reliable and accurate indication of animal welfare. We conclude that location systems are a promising approach to determining animal welfare, especially when applied in conjunction with additional sensors, but additional research focused on the use of technology in animal welfare monitoring is needed.
MULTIFILE
Fontys University of Applied Science’s Institute of Engineering, and the Dutch Institute for Fundamental Energy Research (DIFFER) are proposing to set up a professorship to develop novel sensors for fusion reactors. Sensors are a critical component to control and optimise the unstable plasma of Tokamak reactors. However, sensor systems are particularly challenging in fusion-plasma facing components, such as the divertor. The extreme conditions make it impossible to directly incorporate sensors. Furthermore, in advanced reactor concepts, such as DEMO, access to the plasma via ports will be extremely limited. Therefore, indirect or non-contact sensing modalities must be employed. The research group Distributed Sensor Systems (DSS) will develop microwave sensor systems for characterising the plasma in a tokamak’s divertor. DSS will take advantage of recent rapid developments in high frequency integrated circuits, found, for instance, in automotive radar systems, to develop digital reflectometers. Access through the divertor wall will be achieved via surface waveguide structures. The waveguide will be printed using 3D tungsten printing that has improved precision, and reduced roughness. These components will be tested for durability at DIFFER facilities. The performance of the microwave reflectometer, including waveguides, will be tested by using it to analyse the geometry and dynamics of the Magnum PSI plasma beam. The development of sensor-based systems is an important aspect in the integrated research and education program in Electrical Engineering, where DSS is based. The sensing requirements from DIFFER offers an interesting and highly relevant research theme to DSS and exciting projects for engineering students. Hence, this collaboration will strengthen both institutes and the educational offerings at the institute of engineering. Furthermore millimeter wave (mmWave) sensors have a wide range of potential applications, from plasma characterisation (as in this proposal) though to waste separation. Our research will be a step towards realising these broader application areas.
Met het groeien van de gemiddelde levensverwachting is ook de uitdaging gegroeid om een ieder zo lang mogelijk een actieve deelnemer van de samenleving te laten zijn. Duurzame zelfstandige mobiliteit is van groot belang voor het functioneren in de samenleving (op werkplek en in thuisomgeving), draagt bij aan het sociaal functioneren en de algemene sociale cohesie. Goede controle over de (dynamische) balans speelt hierbij een grote rol, zijnde de balanshandhaving tijdens het voortbewegen, ook bij gezonde, jonge mensen een continue compromis tussen effectiviteit en veiligheid. Voor ouderen geldt dit nog sterker, daar de gevolgen van een val vele malen ernstiger zijn en ook een grote invloed hebben op de levensverwachting. Mechanismen van handhaving van de dynamische balans in praktische omstandigheden zijn nog grotendeels onbegrepen. Laboratoria staat vaak ver af van praktische condities van de alledaage praktijk. Moderne sensortechnologie opent momenteel een deur naar systematisch onderzoek naar valrisico’s in het dagelijkse leven, echter deze schiet nog te kort in haalbare accuratesse en stabiltiteit over langere metingen. In verschillende projecten wordt momenteel een nieuwe generatie van methoden onderzocht, met als centraal kenmerk hiervan dat bewegingsensoren niet meer als losse onderdelen functioneren, maar in samenhang worden gebruikt. Het kersverse INSTANT project, bijvoorbeeld, onderzoekt hoe huidige bewegingsensoren kunnen worden uitgebreid met een extra sensormodaliteit en ‘meta-datafusion’ algorithmen. Hierdoor kunnen de sensoren elkaars positie waarnemen en naar verwachting een orde meer accuraat meten op een manier die bovendien stabieler is over langere metingen. Aan iets vergelijkbaars wordt gewerkt door collega’s in Torino en Sassari, Italie, zij het met een andere type sensortechnologie. Dit KIEM project onderzoekt in hoeverre beide methoden (en beide onderzoeksclusters) elkaar kunnen versterken door intensief samen te werken. Het plaatsen van een Italiaanse onderzoeker in het INSTANT onderzoekscluster in Enschede gedurende grote delen van een jaar borgt deze samenwerking.
Rotating machinery, such as centrifugal pumps, turbines, bearings, and other critical systems, is the backbone of various industrial processes. Their failures can lead to significant maintenance costs and downtime. To ensure their continuous operation, we propose a fault diagnosis and monitoring framework that leverages the innovative use of acoustic sensors for early fault detection, especially in components less accessible for traditional vibration-based monitoring strategies. The main objective of the proposed project is to develop a fault diagnosis and monitoring framework for rotating machinery, including the fusion of acoustic sensors and physics-based models. By combining real-time monitoring data from acoustic sensors with an understanding of first principles, the framework will enable maintenance practitioners to identify and categorize different failure modes such as wear, fatigue, cavitation, reduced flow, bearing damage, impeller damage, misalignment, etc. In the initial phase, the focus will be on centrifugal pumps using the existing test set-up at the University of Twente. Sorama specializes in acoustic sensors to locate noise sources and will provide acoustic cameras to capture sound patterns related to pump deterioration during various operating conditions. These acoustic signals will then be correlated with the different failure modes and mechanisms that will be described by physics-based models, such as wear, fatigue, cavitation, corrosion, etc. Furthermore, a recently published data set by the Dynamics Based Maintenance research group that includes vibration analysis data and motor current analysis data of various fault scenarios, such as mentioned above, will be used as validation. The anticipated outcome of this project is a versatile framework for a physics-informed acoustic monitoring system. This system is designed to enhance early fault detection significantly, reducing maintenance costs and downtime across a broad spectrum of industrial applications, from centrifugal pumps to turbines, bearings, and beyond.