The authors present the design of the shipping simulation SEL and its integration in the MSP Challenge Simulation Platform. This platform is designed to give policymakers and planners insight into the complexity of Maritime Spatial Planning (MSP) and can be used for interactive planning support. It uses advanced game technology to link real geo- and marine data with simulations for ecology, energy and shipping. The shipping sector is an important economic sector with influential stakeholders. SEL calculates the (future) impact of MSP decisions on shipping routes. This is dynamically shown in key performance indicators (e.g. route efficiencies) and visualised in heat maps of ship traffic. SEL uses a heuristic-based graph-searching algorithm to find paths from one port to another during each simulated month. The performance of SEL was tested for three sea basins: the firth of Clyde, Scotland (smallest), North Sea (with limited data) and Baltic Sea regions (largest, with most complete data). The behaviour of the model is stable and valid. SEL takes between 4 and 17 seconds to generate the desired monthly output. Experiences in 20 sessions with 302 planners, stakeholders and students indicate that SEL is a valuable addition to MSP Challenge, and thereby to MSP.
Passenger flow management is an important issue at many airports around the world. There are high concentrations of passengers arriving and leaving the airport in waves of large volumes in short periods, particularly in big hubs. This might cause congestion in some locations depending on the layout of the terminal building. With a combination of real airport data, as well as synthetic data obtained through an airport simulator, a Long Short-Term Memory Recurrent Neural Network has been implemented to predict the possible trajectories that passengers may travel within the airport depending on user-defined passenger profiles. The aim of this research is to improve passenger flow predictability and situational awareness to make a more efficient use of the airport, that could also positively impact communication with public and private land transport operators.
A software system is described that uses the agent concept in the Cell Control layer. Important design goals are: the system continues as good as possible after a process crash, crashed processes are recreated whenever possible, and equivalent workstations are allocated dynamically. This project is carried out mainly to investigate whether the agent concept is applicable in such a situation. The system is not operational yet, but will be built in the period ahead. In addition, a graphic simulator for a small manufacturing system will be built for testing the agent structure.
Snelheid is één van de belangrijkste basisrisicofactoren in het verkeer. Hoe sneller er gereden wordt in een auto hoe groter de kans op (zware) ongevallen2 en hoe hoger de uitstoot. Veel verkeersveiligheidsbeleid spitst zich daarom toe op het voorkomen van te hoge snelheden en het voorkomen van te grote snelheidsverschillen. ISA, Intelligente Snelheid Adaptatie, is een van de technologische oplossingen die kan bijdragen aan het voorkomen van te hoge snelheden in auto’s. ISA kent vele verschijningsvormen, van informerend (via slimme technologie wordt de bestuurder geïnformeerd over de geldende maximumsnelheid) tot dwingend (de auto wordt fysiek beperkt om harder te rijden dan de maximumsnelheid). Inmiddels bestaat voldoende bewijs dat de acceptatiegraad van ISA hoog kan zijn, wanneer het systeem perfect werkt. De praktijk is echter weerbarstig, doordat systemen (soms) technisch kunnen falen of onvoldoende correcte informatie doorgeven aan de bestuurder. Dit staat de acceptatie van ISA in de weg; niet in de laatste plaats omdat onderzoek heeft aangetoond dat bestuurders hogere normen hanteren voor het accepteren van technisch falen in zelfrijdende voertuigen5. Een (rijtaakondersteunend)systeem moet ten alle tijden beter functioneren dan de mens. In ACTI-I wordt dit spanningsveld onderzocht. De vraag luidt: Welke impact heeft technisch falen op de acceptatie van ISA? Deze vraag wordt beantwoord middels 1) literatuuronderzoek naar falen en acceptatie van technologische systemen; 2) rijsimulator/deelnemersonderzoek naar de waardering voor ISA en of, en zo ja hoe, de waardering verandert al naar gelang het falen van het systeem toeneemt. We werken hiervoor samen met drie MKB’s die ISA systemen ontwikkelen en verkopen aan particulieren en de overheid. De resultaten van ACTI-I zullen worden gepubliceerd en vormen de basis voor een RAAK-MKB onderzoek naar de relatie tussen technisch falen en de bestuurdersacceptatie van ISA en andere geavanceerde rijhulpsystemen
In het project “ADVICE: Advanced Driver Vehicle Interface in a Complex Environment” zijn belangrijke onderzoeksresultaten geboekt op het gebied van het schatten van de toestand en werklast van een voertuigbestuurder om hiermee systemen die informatie geven aan de bestuurder adaptief te maken om zo de veiligheid te verhogen. Een voorbeeld is om minder belangrijke informatie van een navigatiesysteem te onderdrukken, zolang de bestuurder een hoge werklast ervaart voor het autorijden en/of belangrijke informatie juist duidelijker weer te geven. Dit leidt tot een real-time werklast schatter die geografische informatie meeneemt, geavaleerd in zowel een rijsimulator als op de weg. In de ontwikkeling naar automatisch rijden is de veranderende rol van de bestuurder een belangrijk (veiligheids) onderwerp, welke sterk gerelateerd is aan de werklast van de bestuurder. Indien rijtaken meer geautomatiseerd worden, wijzigt de rol van actieve bestuurder meer naar supervisie van de rijtaken, maar tevens met de eis om snel en gericht in te grijpen indien de situatie dit vereist. Zowel deze supervisie als interventietaak zijn geen eenvoudige taken met onderling een sterk verschillende werklast (respectievelijk lage en (zeer) hoge werklast). Of een goede combinatie inclusief snelle overgangen tussen deze twee hoofdtaken veilig mogelijk is voor een bestuurder en hoe dit dan het beste ondersteund kan worden, is een belangrijk onderwerp van huidig onderzoek. De ontwikkeling naar autonoom rijden verandert niet alleen de rol van de bestuurder, maar zal ook de eisen aan het rijgedrag van het voertuig beïnvloeden, de voertuigdynamica. Voor de actieve bestuurder kunnen snelle voertuigreacties op bestuurdersinput belangrijk zijn, zeker voor een ‘sportief’ rijdende bestuurder. Indien dit voertuig ook automatische rijtaken moet uitvoeren, kan juist een meer gelijkmatig rijgedrag gewenst zijn, zodat de bestuurder ook andere taken kan uitvoeren. Dit stelt eisen aan vertaling van (automatische) input naar voertuigreactie en aan de voertuigdynamica. Mogelijk wil zelfs een sportieve bestuurder een meer comfortabel voertuiggedrag tijdens automatisch rijden. Eveneens voor deze twee voertuigtoestanden, menselijke of automatische besturing, moet gezocht worden naar een goede combinatie inclusief (veilige) overgangen tussen deze twee toestanden. Hierbij speelt de werklast en toestand van de bestuurder een doorslaggevende rol. In de geschetste ontwikkelingen in automatisch rijden kunnen de onderzoeksresultaten van ADVICE een goede ondersteuning bieden. Veel van deze ontwikkelingen worstelen met het schatten van de werklast van de bestuurder als cruciaal (veiligheids) aspect van automatisch rijden. De ADVICE resultaten zijn echter gepresenteerd voor beperkt publiek en gepubliceerd op conferenties, waarvan de artikelen veelal slechts tegen betaling toegankelijk zijn. Daarnaast zijn dergelijke artikelen gelimiteerd in aantal pagina’s waardoor de over te dragen informatie beperkt is. Om een betere doorwerking van ADVICE aan ‘iedereen’ te realiseren en tevens de mogelijkheden hiervan in de toekomst van automatisch rijden te plaatsen, willen wij top-up gebruiken om hierover een artikel te schrijven en dit in een peer-reviewed Open Access tijdschrift online toegankelijk te maken. Hierdoor wordt de informatie voor iedereen, gratis toegankelijk (open access), is de inhoud uitgebreider aan te geven (tijdschriftartikel) en is de inhoud en kwaliteit goed en relevant voor het vakgebied (peer-reviewed).
In het project ‘AgroCycle’ wordt onderzocht of een coöperatie van boerderijen zelfvoorzienend kunnen worden in energie en bemesting door het gebruiken van mest in organische afvalstromen voor de productie van energie, groene brandstof en groene meststoffen door middel anaerobe vergisting. In het project beogen de projectpartners de nutriëntenkringloop (van mest tot digestaat tot groene meststof) te koppelen aan een zelfvoorzienend energiesysteem (biomassa tot biogas tot groene brandstof voor de bewerking van het land) door de gecombineerde productie van biogas en groene meststoffen. De financiële haalbaarheid van een biovergister is sterk afhankelijk van het gebruik en de economische waarde van het digestaat. Met deze gecombineerde aanpak wordt zowel de haalbaarheid als de duurzaamheid (milieueffecten en CO2 - emissies) vergroot. Om de haalbaarheid van dit concept te onderzoeken wordt gebruik gemaakt van het bestaande model ‘BioGas simulator’ dat door de Hanzehogeschool Groningen ontwikkeld is om het technische proces van decentrale productie van biogas te kunnen simuleren.