This study explores how households interact with smart systems for energy usage, providing insights into the field's trends, themes and evolution through a bibliometric analysis of 547 relevant literature from 2015 to 2025. Our findings discover: (1) Research activity has grown over the past decade, with leading journals recognizing several productive authors. Increased collaboration and interdisciplinary work are expected to expand; (2) Key research hotspots, identified through keyword co-occurrence, with two (exploration and development) stages, highlighting the interplay between technological, economic, environmental, and behavioral factors within the field; (3) Future research should place greater emphasis on understanding how emerging technologies interact with human, with a deeper understanding of users. Beyond the individual perspective, social dimensions also demand investigation. Finally, research should also aim to support policy development. To conclude, this study contributes to a broader perspective of this topic and highlights directions for future research development.
MULTIFILE
Smart city-policy makers and technology vendors are increasingly stating they want to bring about citizen-centered smart cities. Yet, it often remains unclear what exactly that means, and how citizens are envisaged as actors in smart cities. This article wants to contribute to this discussion by exploring the relation between smart cities and citizenship. It aims to do this by introducing a heuristic scheme that brings out the implied notions of citizenship in three distinct sets of smart city visions and practices: The Control Room envisages the city as a collection of infrastructures and services; The Creative City views the city from the perspective of (economic) geography and ponders on local and regional systems of innovation; The Smart Citizens discourse addresses the city as a political and civic community. These smart city discourses are mapped against two visions on citizenship and governance taken from political philosophy. A `republican' perspective with strong presence in social-democratic countries is contrasted with a libertarian one, most prominent in Silicon Valley approaches to smart city technologies. This provides a scheme to reflect on potential benefits and downsides if a specific smart city discourse would develop. Instances of smart cities may promote notions of citizenship that are based on consumer choice and individual responsibility, alternatively they could also reinforce collective responsibilities towards the common good of society.
DOCUMENT
B4B is a multi-year, multi-stakeholder project focused on developing methods to harness big data from smart meters, building management systems and the Internet of Things devices, to reduce energy consumption, increase comfort, respond flexibly to user behaviour and local energy supply and demand, and save on installation maintenance costs. This will be done through the development of faster and more efficient Machine Learning and Artificial Intelligence models and algorithms. The project is geared to existing utility buildings such as commercial and institutional buildings.
DOCUMENT
Eindrapportage Smart Industry Hub Noord Nederland
DOCUMENT
In discussions on smart grids, it is often stated that residential end-users will play a more active role in the management of the electric power system. Experience in practice on how to empower end-users for such a role is however limited. This paper presents a field study in the first phase of the PowerMatching City project in which twenty-two households were equipped with demand-response-enabled heating systems and white goods. Although end-users were satisfied with the degree of living comfort afforded by the smart energy system, the user interface did not provide sufficient control and energy feedback to support an active contribution to the balancing of supply and demand. The full potential of demand response was thus not realized. The second phase of the project builds on these findings by design, implementation and evaluation of an improved user interface in combination with two demand response propositions. © 2013 IEEE.
DOCUMENT
Deze bijdrage aan "Smart Humanity" (red. W. Bronsgeest en S. de Waart 2020) schetst een beeld van modellen die richting geven aan processen, organisatorische inrichting, en informatievoorziening. AI-toepassingen worden hierbij gezien als onderdeel van de informatievoorziening.
DOCUMENT
Uitwerking van het smart industry ecosysteem voor onderwijs en arbeid. Hierin aandacht voor Smart Industry en Formeel leren, Leven Lang Leren, flexibilisering en Learning by doing.
DOCUMENT
Contribution to conference magazine https://husite.nl/ssc2017/ Conference ‘Smart Sustainable Cities 2017 – Viable Solutions’ The conference ‘Smart Sustainable Cities 2017 – Viable Solutions’ was held on 14 June 2017 in Utrecht, the Netherlands. Over 250 participants from all over Europe attended the conference.
DOCUMENT
From the list of content: " Smart sustainable cities & higher education, Essence: what, why & how? Developing learning materials together; The blended learning environment; Teaching on entrepreneurship; Utrecht municipality as a client; International results; Studentexperiences; International relations; City projects in Turku, Alcoy and Utrecht ".
DOCUMENT
The Smart Current Limiter is a switching DC to DC converter that provides a digitally pre-set input current control for inrush limiting and power management. Being able to digitally adjust the current level in combination with external feedback can be used for control systems like temperature control in high power DC appliances. Traditionally inrush current limiting is done using a passive resistance whose resistance changes depending on the current level. Bypassing this inrush limiting resister with a Mosfet improves efficiency and controllability, but footprint and losses remain large. A switched current mode controlled inrush limiter can limit inrush currents and even control the amount of current passing to the application. This enables power management and inrush current limitation in a single device. To reduce footprint and costs a balance between losses and cost-price on one side and electromagnetic interference on the other side is sought and an optimum switching frequency is chosen. To reduce cost and copper usage, switching happens on a high frequency of 300kHz. This increases the switching losses but greatly reduces the inductor size and cost compared to switching supplies running on lower frequencies. Additional filter circuits like snubbers are necessary to keep the control signals and therefore the output current stable.
DOCUMENT