Both Software Engineering and Machine Learning have become recognized disciplines. In this article I analyse the combination of the two: engineering of machine learning applications. I believe the systematic way of working for machine learning applications is at certain points different from traditional (rule-based) software engineering. The question I set out to investigate is “How does software engineering change when we develop machine learning applications”?. This question is not an easy to answer and turns out to be a rather new, with few publications. This article collects what I have found until now.
LINK
In this post I give an overview of the theory, tools, frameworks and best practices I have found until now around the testing (and debugging) of machine learning applications. I will start by giving an overview of the specificities of testing machine learning applications.
LINK
Machine learning models have proven to be reliable methods in classification tasks. However, little research has been conducted on the classification of dwelling characteristics based on smart meter and weather data before. Gaining insights into dwelling characteristics, which comprise of the type of heating system used, the number of inhabitants, and the number of solar panels installed, can be helpful in creating or improving the policies to create new dwellings at nearly zero-energy standard. This paper compares different supervised machine learning algorithms, namely Logistic Regression, Support Vector Machine, K-Nearest Neighbor, and Long-short term memory, and methods used to correctly implement these algorithms. These methods include data pre-processing, model validation, and evaluation. Smart meter data, which was used to train several machine learning algorithms, was provided by Groene Mient. The models that were generated by the algorithms were compared on their performance. The results showed that the Long-short term memory performed the best with 96% accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrics were used to produce classification reports, which indicates that the Long-short term memory outperforms the compared models on the evaluation metrics for this specific problem.
DOCUMENT
In het ziekenhuis kan elke fout een leven kosten. Zo kan al een kleine bereidingsfout bij het klaarmaken van intraveneuze medicijnen (IV) leiden tot levensbedreigende omstandigheden voor de patiënt. Bereiding van dit type medicijnen gebeurt in de apotheek en op de verpleegafdeling. Met name op de verpleegafdeling is het een drukke en onvoorspelbare setting. Wereldwijd komen in deze setting ernstige bereidingsfouten nog te frequent voor. Om deze menselijke fouten te reduceren, wordt in deze KIEM aanvraag een proof-of-concept ‘slim oog’ ontwikkeld die vlak voor de toediening detecteert of de juiste dosis aanwezig is, of het type medicijn correct is en geen vervuiling aanwezig is. Het slimme oog maakt gebruik van hyperspectrale technologie en artificial intelligence, en is een samenwerking tussen de Computer Vision & Data Science afdeling van NHL Stenden Hogeschool, de automatische medicijncontrole specialist ZiuZ, en het Tjongerschans ziekenhuis. De unieke combinatie tussen nieuwe AI-technieken, hyperspectrale techniek en de toepassing op intraveneuze medicijnen is voor dit consortium technisch nieuw, en is nog niet eerder ontwikkeld voor de toepassing aan het bed of in de medicijnkamer op de verpleegafdeling. De onvoorspelbare setting en de urgentie aan het bed maakt dit onderzoek technisch uitdagend. Tevens moet het uiteindelijke device klein en draagbaar en snel werkzaam zijn. Om de grote verscheidenheid aan mogelijke gebruik scenario's en menselijke fouten te vangen in het algoritme, wordt een door NHLS ontwikkelde simulatie procedure gevolgd: met nabootsing van de praktijksituatie in samenwerking met zorgverleners, met opzettelijke fouten, en computer gegenereerde beeldmanipulatie. Het project zal geïntegreerd worden in het onderwijs volgens de design-based methode, met teams bestaande uit domein experts, bedrijven, docent-onderzoekers en studenten. Het uiteindelijke doel is om met een proof-of-concept aan-het-bed demonstrator een groot consortium van ziekenhuizen, ontwikkelaars en eindgebruikers enthousiast te maken voor een groter vervolgproject.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.