University teacher teams can work toward educational change through the process of team learning behavior, which involves sharing and discussing practices to create new knowledge. However, teachers do not routinely engage in learning behavior when working in such teams and it is unclear how leadership support can overcome this problem. Therefore, this study examines when team leadership behavior supports teacher teams in engaging in learning behavior. We studied 52 university teacher teams (281 respondents) involved in educational change, resulting in two key findings. First, analyses of multiple leadership types showed that team learning behavior was best supported by a shared transformational leadership style that challenges the status quo and stimulates team members’ intellect. Mutual transformational encouragement supported team learning more than the vertical leadership source or empowering and initiating structure styles of leadership. Second, moderator analyses revealed that task complexity influenced the relationship between vertical empowering team leadership behavior and team learning behavior. Specifically, this finding suggests that formal team leaders who empower teamwork only affected team learning behavior when their teams perceived that their task was not complex. These findings indicate how team learning behavior can be supported in university teacher teams responsible for working toward educational change. Moreover, these findings are unique because they originate from relating multiple team leadership types to team learning behavior, examining the influence of task complexity, and studying this in an educational setting. https://www.scienceguide.nl/2021/06/leren-van-docentteams-vraagt-om-gezamenlijk-leiderschap/
LINK
University teacher teams can work toward educational change through the process of team learning behavior, which involves sharing and discussing practices to create new knowledge. However, teachers do not routinely engage in learning behavior when working in such teams and it is unclear how leadership support can overcome this problem. Therefore, this study examines when team leadership behavior supports teacher teams in engaging in learning behavior. We studied 52 university teacher teams (281 respondents) involved in educational change, resulting in two key findings. First, analyses of multiple leadership types showed that team learning behavior was best supported by a shared transformational leadership style that challenges the status quo and stimulates team members’ intellect. Mutual transformational encouragement supported team learning more than the vertical leadership source or empowering and initiating structure styles of leadership. Second, moderator analyses revealed that task complexity influenced the relationship between vertical empowering team leadership behavior and team learning behavior. Specifically, this finding suggests that formal team leaders who empower teamwork only affected team learning behavior when their teams perceived that their task was not complex. These findings indicate how team learning behavior can be supported in university teacher teams responsible for working toward educational change. Moreover, these findings are unique because they originate from relating multiple team leadership types to team learning behavior, examining the influence of task complexity, and studying this in an educational setting.
Background: The number of people with multiple chronic conditions requiring primary care services increases. Professionals from different disciplines collaborate and coordinate care to deal with the complex health care needs. There is lack of information on current practices regarding interprofessional team (IPT) meetings. Objectives: This study aimed to improve our understanding of the process of interprofessional collaboration in primary care team meetings in the Netherlands by observing the current practice and exploring personal opinions. Methods. Qualitative study involving observations of team meetings and interviews with participants. Eight different IPT meetings (n = 8) in different primary care practices were observed by means of video recordings. Experiences were explored by conducting individual semi-structured interviews (n = 60) with participants (i.e. health care professionals from different disciplines) of the observed team meetings. The data were analysed by means of content analysis. Results: Most participants expressed favourable opinions about their team meetings. However, observations showed that team meetings were more or less hectic, and lacked a clear structure and team coordinator or leader. There appears to be a discrepancy between findings from observations and interviews. From the interviews, four main themes were extracted: (1) Team structure and composition, (2) Patient-centredness, (3) Interaction and (4) Attitude and motivation. Conclusion: IPT meetings could benefit from improvements in structure, patient-centredness and leadership by the chairpersons. Given the discrepancy between observations and interviews, it would appear useful to improve team members’ awareness of aspects that could be improved before training them in dealing with specific challenges.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
Electronic Sports (esports) is a form of digital entertainment, referred to as "an organised and competitive approach to playing computer games". Its popularity is growing rapidly as a result of an increased prevalence of online gaming, accessibility to technology and access to elite competition.Esports teams are always looking to improve their performance, but with fast-paced interaction, it can be difficult to establish where and how performance can be improved. While qualitative methods are commonly employed and effective, their widespread use provides little differentiation among competitors and struggles with pinpointing specific issues during fast interactions. This is where recent developments in both wearable sensor technology and machine learning can offer a solution. They enable a deep dive into player reactions and strategies, offering insights that surpass traditional qualitative coaching techniquesBy combining insights from gameplay data, team communication data, physiological measurements, and visual tracking, this project aims to develop comprehensive tools that coaches and players can use to gain insight into the performance of individual players and teams, thereby aiming to improve competitive outcomes. Societal IssueAt a societal level, the project aims to revolutionize esports coaching and performance analysis, providing teams with a multi-faceted view of their gameplay. The success of this project could lead to widespread adoption of similar technologies in other competitive fields. At a scientific level, the project could be the starting point for establishing and maintaining further collaboration within the Dutch esports research domain. It will enhance the contribution from Dutch universities to esports research and foster discussions on optimizing coaching and performance analytics. In addition, the study into capturing and analysing gameplay and player data can help deepen our understanding into the intricacies and complexities of teamwork and team performance in high-paced situations/environments. Collaborating partnersTilburg University, Breda Guardians.
In revalidatie-behandelteams zijn ergotherapeuten de ‘primus inter pares’ voor advisering over hulpmiddelen; hulpmiddelen die mensen met beperkingen ondersteunen bij activiteiten in zelfverzorging, onderwijs, spel, arbeid en wonen. Behoud van deze expertrol vraagt van ergotherapeuten om de nieuwste technologieën te integreren in de praktijk. Een snelgroeiende ontwikkeling betreft technologie waarmee men zelfhulpmiddelen kan ontwikkelen, maken of aanpassen. Zogenaamde do-it-yourself-technologie (DIY) met 3D-printing als bekendste voorbeeld. Revalidatie-ergotherapeuten van Adelante, Libra en Sevagram willen met DIY-technologie aan de slag om hulpmiddelen meer op maat, goedkoper en sneller te vervaardigen in nauwe samenwerking met hun cliënten. Onduidelijk is echter hoe een revalidatiedienst met DIY-technologie eruit kan zien, hoe deze in te bedden is in de dagelijkse praktijk, en hoe doorontwikkeling bewerkstelligd kan worden. Maken van hulpmiddelen met DIY-technologie past bij de identiteit van de ergotherapeut, maar vraagt om nieuwe werkwijzen en samenwerkingsverbanden om nieuwe kennis over techniek, ontwerpen en over materialen. Daarnaast spelen vragen van medische, financiële, ethische en juridische aard een rol. Met de ergotherapeuten kwamen we tot de volgende hoofdvraag: Hoe maken we als ergotherapeuten DIY-technologie, zoals 3D-printen, tot een integraal onderdeel van onze praktijk om met onze cliënten tot maatwerk-hulpmiddelen te komen? Deze vraag wordt binnen de drie centra, in vier fasen (analyse, design/testen, implementatie, doorontwikkeling) opgepakt met actieonderzoek als centrale methode en een diversiteit aan kwalitatieve en kwantitatieve manieren van gegevensverzameling. Partners in deze projectaanvraag (revalidatie-professionals, kennisinstellingen, brancheorganisaties, cliëntenorganisaties en ondernemers) zijn overtuigd dat DIY-technologie meerwaarde biedt voor het aanbod aan hulpmiddelen en invloed heeft op de eigen regie en participatie van cliënten. Met ondersteuning van hun uitgebreide expertise wordt de nieuwe dienst beschreven en wordt een toolbox DIY-technologie ontwikkeld en geïmplementeerd. Ook wordt een database voor zelfgemaakte hulpmiddelen en een DIY-community gerealiseerd. Deze kennis wordt gebruikt in het onderwijs van ergotherapie, Healthcare Engineering en Communication and Multimedia-Design.