Nomination Best Research & Practice Project Award at the EAPRIL conference, Jyväskylä, Finland. Hybrid forms of learning environments in vocational education are central to the two projects of this application: a design-oriented, applied research project from the Centre for Expertise in Vocational Education (ecbo-project) and an educational innovation/practitioner-research project (hpboproject). A PhD-research project is closely related.
Learning environment designs at the boundary of school and work can be characterised as integrative because they integrate features from the contexts of school and work. Many different manifestations of such integrative learning environments are found in current vocational education, both in senior secondary education and higher professional education. However, limited research has focused on how to design these learning environments and not much is known about their designable elements (i.e. the epistemic, spatial, instrumental, temporal and social elements that constitute the learning environments). The purpose of this study was to examine manifestations of two categories of integrative learning environment designs: designs based on incorporation; and designs based on hybridisation. Cross-case analysis of six cases in senior secondary vocational education and higher professional education in the Netherlands led to insights into the designable elements of both categories of designs. We report findings about the epistemic, spatial, instrumental, temporal and social elements of the studied cases. Specific characteristics of designs based on incorporation and designs based on hybridisation were identified and links between the designable elements became apparent, thus contributing to a deeper understanding of the design of learning environments that aim to connect the contexts of school and work.
LINK
Although self-regulation is an important feature related to students’ study success as reflected in higher grades and less academic course delay, little is known about the role of self- regulation in blended learning environments in higher education. For this review, we analysed 21 studies in which self-regulation strategies were taught in the context of blended learning. Based on an analysis of literature, we identified four types of strategies: cognitive, metacognitive, motivational and management. Results show that most studies focused on metacognitive strategies, followed by cognitive strategies, whereas little to no attention is paid to motivation and management strategies. To facilitate self-regulation strategies non-human student tool interactional methods were most commonly used, followed by a mix of human student-teacher and non-human student content and student environment methods. Results further show that the extent to which students actively apply self-regulation strategies also depends heavily on teacher's actions within the blended learning environment. Measurement of self-regulation strategies is mainly done with questionnaires such as the Motivation and Self-regulation of Learning Questionnaire.Implications for practice and policy:•More attention to self-regulation in online and blended learning is essential.•Lecturers and course designers of blended learning environments should be aware that four types of self-regulation strategies are important: cognitive, metacognitive, motivational and management.•Within blended learning environments, more attention should be paid to cognitive, motivation and management strategies to promote self-regulation.