Learning environment designs at the boundary of school and work can be characterised as integrative because they integrate features from the contexts of school and work. Many different manifestations of such integrative learning environments are found in current vocational education, both in senior secondary education and higher professional education. However, limited research has focused on how to design these learning environments and not much is known about their designable elements (i.e. the epistemic, spatial, instrumental, temporal and social elements that constitute the learning environments). The purpose of this study was to examine manifestations of two categories of integrative learning environment designs: designs based on incorporation; and designs based on hybridisation. Cross-case analysis of six cases in senior secondary vocational education and higher professional education in the Netherlands led to insights into the designable elements of both categories of designs. We report findings about the epistemic, spatial, instrumental, temporal and social elements of the studied cases. Specific characteristics of designs based on incorporation and designs based on hybridisation were identified and links between the designable elements became apparent, thus contributing to a deeper understanding of the design of learning environments that aim to connect the contexts of school and work.
LINK
Educational institutions and vocational practices need to collaborate to design learning environments that meet current-day societal demands and support the development of learners’ vocational competence. Integration of learning experiences across contexts can be facilitated by intentionally structured learning environments at the boundary of school and work. Such learning environments are co-constructed by educational institutions and vocational practices. However, co-construction is challenged by differences between the practices of school and work, which can lead to discontinuities across the school–work boundary. More understanding is needed about the nature of these discontinuities and about design considerations to counterbalance these discontinuities. Studies on the co-construction of learning environments are scarce, especially studies from the perspective of representatives of work practice. Therefore, the present study explores design considerations for co-construction through the lens of vocational practice. The study reveals a variety of discontinuities related to the designable elements of learning environments (i.e. epistemic, spatial, instrumental, temporal, and social elements). The findings help to improve understanding of design strategies for counterbalancing discontinuities at the interpersonal and institutional levels of the learning environment. The findings confirm that work practice has a different orientation than school practice since there is a stronger focus on productivity and on the quality of the services provided. However, various strategies for co-construction also seem to take into account the mutually beneficial learning potential of the school–work boundary.
LINK
Research into the relationship between innovative physical learning environments (PLEs) and innovative psychosocial learning environments (PSLEs) indicates that it must be understood as a network of relationships between multiple psychosocial and physical aspects. Actors shape this network by attaching meanings to these aspects and their relationships in a continuous process of gaining and exchanging experiences. This study used a psychosocial-physical, relational approach for exploring teachers’ and students’ experiences with six innovative PLEs in a higher educational institute, with the application of a psychosocial-physical relationship (PPR) framework. This framework, which brings together the multitude of PLE and PSLE aspects, was used to map and analyse teachers’ and students’ experiences that were gathered in focus group interviews. The PPR framework proved useful in analysing the results and comparing them with previous research. Previously-identified relationships were confirmed, clarified, and nuanced. The results underline the importance of the attunement of system aspects to pedagogical and spatial changes, and of a psychosocial-physical relational approach in designing and implementing new learning environments, including the involvement of actors in the discourse within and between the different system levels. Interventions can be less invasive, resistance to processes could be reduced, and innovative PLEs could be used more effectively.
MULTIFILE