Climate change and urbanization will increase the frequency and magnitude of urban flooding and water quality problems in many regions of the world. In coastal and delta areas like The Netherlands and the Philippines, where urbanization is often high, there has been an increase in the adoption of sustainable urban drainage systems (SUDS). SUDS are installed around the world with the expectation to reduce urban flooding and reduce the pollution impact on receiving waters. Most cities in Asia are starting to implement SUDS as their strategy to make their cities sustainable and resilient.The combination of SUDS with appropriate wastewater treatment and management systems have the potential to be multifunctional in alleviating flood run-off, improving water quality, alleviating heat stress and as a source for reusing the stormwater and wastewater.Since the earliest SUDS are implemented in Europe decades ago it is advised to use the lessons learnt in this process. International knowledge exchange is promoted in projects as IWASTO where several organisations from the Philippines and The Netherlands join forces on a specific region as the Pateros riverin Manila with the aim to minimise the pollution impact on this receiving water. The first findings of this project related to storm water and wastewater management are presented in this paper. In this stage of the project high level support models that map the challenges in the city (such as flooding and heatstress) arevaluable tools for implementing cost effective sustainable drainage for improving water quality.
DOCUMENT
Small urban water bodies, like ponds or canals, are often assumed to cool their surroundings during hot periods, when water bodies remain cooler than air during daytime. However, during the night they may be warmer. Sufficient fetch is required for thermal effects to reach a height of 1–2 m, relevant for humans. In the ‘Really cooling water bodies in cities’ (REALCOOL) project thermal effects of typical Dutch urban water bodies were explored, using ENVI-met 4.1.3. This model version enables users to specify intensity of turbulent mixing and light absorption of the water, offering improved water temperature simulations. Local thermal effects near individual water bodies were assessed as differences in air temperature and Physiological Equivalent Temperature (PET). The simulations suggest that local thermal effects of small water bodies can be considered negligible in design practice. Afternoon air temperatures in surrounding spaces were reduced by typically 0.2 °C and the maximum cooling effect was 0.6 °C. Typical PET reduction was 0.6 °C, with a maximum of 1.9 °C. Night-time warming effects are even smaller. However, the immediate surroundings of small water bodies can become cooler by means of shading from trees, fountains or water mists, and natural ventilation. Such interventions induce favorable changes in daytime PET.
DOCUMENT
This paper presents five design prototypes for cool urban water environments developed in the 'Really cooling water bodies in cities' (REALCOOL) project. The REALCOOL prototypes address an urgent need: urban water bodies, such as ponds or canals, are often assumed to cool down their surroundings during days with heat stress, whereas recent research shows that this is not always the case and that urban water bodies may actually have warming effects too. There are, however, indications that shading, vaporising water, and proper ventilation can keep water bodies and their surroundings cooler. Yet, it is necessary to explore how these strategies can be optimally combined and how the resulting design guidelines can be communicated to design professionals. The REALCOOL prototypes communicate the spatial layout and biometeorological effects of such combinations and assist design decisions dealing with urban water environments. The micrometeorological simulations with Envimet showed that the prototypes led to local reductions on daytime PET from 1 °C to 7 °C, upon introducing shade. Water mist and fountains were also cooling solutions. The important role of ventilation was confirmed. The paper discusses and concludes about the use of the prototypes as tools for urban design practice.
DOCUMENT
Antibiotics are a factor in developing antibiotic resistance in the environment. Outbreaks due to pathogens and resistant bacteria are an emerging issue in this decade. Resistance of Escherichia coli to two groups of antibiotics has been revised recently by the World Health Organization (WHO). These data showed that bacteria have already developed resistance to third and fourth group of antibiotics. The WHO report on surveillance and antibiotics consumption evaluation showed that antibiotic consumption varies in EU countries. Outbreaks have increased in parallel to these data depending on country, season, sex, and age group. This chapter revises the routes of spreading and surveillance of E. coli. There is a particular focus on water sources including hospitals, urban wastewater treatment plants (UWTPs), diffuse sources, and water reuse. Extensively revised data are given on the control techniques by biological and advanced processes. The emerging issue of gene transfer control in parallel to the control of bacteria is expressed. A detailed literature survey of emerging technologies of photocatalysis and nanoparticles is given.
LINK
This CIENS-report sums up the main findings from the project “Cultural heritage and water management in urban planning” (Urban WATCH), financed by the Research Council of Norway through the MILJØ2015 programme, and cofunded by the Directorate for Cultural Heritage in Norway (Riksantikvaren) and the Geological Survey of Norway (NGU). The project started up in 2012 and ended in 2015.
DOCUMENT
Small urban water bodies, such as ponds or canals, are commonly believed to solve urban heat problems but recent research shows that the cooling effect of large urban water bodies on hot summer days is quite limited and can actually induce a night-time warming effect. However, shading, vaporising water and proper natural ventilation might help to keep urban water bodies and their surroundings cooler. But how to combine these strategies in urban design?The ‘Really cooling water bodies in cities’ (REALCOOL) research project explored the most effective combinations of shading, water vaporisation and natural ventilation around small urban water bodies. Optimal cooling strategies were developed for common urban water bodies in temperate climate zones. They are now made available to designers as virtual design prototypes
LINK
The need of an adaptive sustainable solution for the increased land scarcity, growing urbanization, climate change and flood risks resulted in the concept of the floating urbanization. In The Netherlands this new type of housing attracted the interest of local authorities, municipalities and water boards. Moreover, plans to incorporate floating houses in the urban planning have already been developed. However, the knowledge gap regarding the potential effect on the water quality halts the further development of the floating houses. This paper shows the results of a water quality measurement campaign, as part of the national program “Knowledge for climate”, at a small floating houses project in Delft and serves as a case study for addressing the environmental-ecological knowledge gap on this topic.
DOCUMENT
Inland surface water systems are characterized by constant variations in time and space. The increased pressure, of natural or anthropic origin, as a consequence of climate change, population growth and urban development accentuate these changes. Effective water management is key to achieve European waterquality and ecological goals. This is only possible with accurate and extensive knowledge of water systems.The collection of data using platforms such as underwater, water surface or aerial drones is gradually becoming more common and appraised. However, these are not yet standard practice in watermanagement. This work addresses the receptivity of water managers in the Netherlands towards underwater drone technology:· Listing and testing of suitable applications;· Comparison between data requirements of water managers (e.g. legislation) and data thatunderwater drones can provide;· Identification of features should R&D projects focus to increase the interest of the water sector.
DOCUMENT
Urban green and shading are adaptation measures that reduce urban heat. This is evident from meteorological measurements and investigations with surveys and has been described in many papers (e.g. Klemm et al., 2015). The cooling effect of these adaptation measures is reflected by lower air temperatures and an improved thermal comfort. Shading and urban green are also experienced as cooler than impervious urban spaces without vegetation or shading. However, the cooling effect of water bodies in cities, such as rivers, lakes, ponds, canals,fountains, is not clear yet (Steeneveld et al., 2014). Several studies show that the cooling effect of water bodies in cities is small, or can even be a source of heat during nighttime. The effect depends on the characteristics of the water body and the meteorological conditions. Nevertheless, water is often mentioned as an adaptation measure to reduce urban heat.To support urban professionals in designing cooler urban environments by using water bodies, we investigated in more detail how different water types in msterdam contribute to cooling the environment. During five summer days, we measured the cooling effect of five different water bodies: a pond, a fountain, a canal, and two rivers. We used measurements from mobile weather stations (air temperature, relative humidity, wind speed, global radiation and globe temperature) and collected almost 1000 surveys near the water bodies and a reference location. From these data, we could determine the effect of the water bodies on air temperature, thermal comfort and thermal sensation. The research question that we tried to answer with this study is: What is the cooling effect of different water types in the city of Amsterdam during hot days? The study has been carried out within the framework of a Dutch research project ‘Urban climate resilience – Turning climate adaptation into practice’ and supports urban professionals to decide on the right adaptation measures to reduce urban heat.
DOCUMENT
When addressing urban heat problems, climate- conscious urban design has been assuming that urban water bodies such as canals, ditches or ponds cool down their surroundings. Recent research shows that this is not necessarily the case and that urban water bodies may actually have a warming e ect, particularly during late summer season nights. There are however indications that water can have a cooling potential if brought together with the right shading, evaporation and ventilation strategies. Yet, it is not clear how this should be achieved. Knowledge on such spatial configurations should thus be developed and made available to design practice. This challenge is directly addressed by the “REALCOOL” project, a research aiming to define design prototypes showing the physical processes behind the e ective cooling potential of urban water bodies, that design professionals can take as conceptual design frameworks.
DOCUMENT