Background: Digital health is well-positioned in low and middle-income countries (LMICs) to revolutionize health care due, in part, to increasing mobile phone access and internet connectivity. This paper evaluates the underlying factors that can potentially facilitate or hinder the progress of digital health in Pakistan. Objective: The objective of this study is to identify the current digital health projects and studies being carried out in Pakistan, as well as the key stakeholders involved in these initiatives. We aim to follow a mixed-methods strategy and to evaluate these projects and studies through a strengths, weaknesses, opportunities, and threats (SWOT) analysis to identify the internal and external factors that can potentially facilitate or hinder the progress of digital health in Pakistan. Methods: This study aims to evaluate digital health projects carried out in the last 5 years in Pakistan with mixed methods. The qualitative and quantitative data obtained from field surveys were categorized according to the World Health Organization’s (WHO) recommended building blocks for health systems research, and the data were analyzed using a SWOT analysis strategy. Results: Of the digital health projects carried out in the last 5 years in Pakistan, 51 are studied. Of these projects, 46% (23/51) used technology for conducting research, 30% (15/51) used technology for implementation, and 12% (6/51) used technology for app development. The health domains targeted were general health (23/51, 46%), immunization (13/51, 26%), and diagnostics (5/51, 10%). Smartphones and devices were used in 55% (28/51) of the interventions, and 59% (30/51) of projects included plans for scaling up. Artificial intelligence (AI) or machine learning (ML) was used in 31% (16/51) of projects, and 74% (38/51) of interventions were being evaluated. The barriers faced by developers during the implementation phase included the populations’ inability to use the technology or mobile phones in 21% (11/51) of projects, costs in 16% (8/51) of projects, and privacy concerns in 12% (6/51) of projects.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Our unilateral diet has resulted in a deficiency of specific elements/components needed for well-functioning of the human body. Especially the element magnesium is low in our processed food and results in neuronal and muscular malfunctioning, problems in bone heath/strength, and increased chances of diabetes, depression and cardiovascular diseases. Furthermore, it has also been recognized that magnesium plays an important role in cognitive functioning (impairment and enhancement), especially for people suffering from neurodegenerative diseases (Parkinson disease, Alzheimer, etc). Recently, it has been reported that magnesium addition positively effects sleep and calmness (anti-stress). In order to increase the bioavailability of magnesium cations, organic acids such as citrate, glycerophosphate and glycinate are often used as counterions. However, the magnesium supplements that are currently on the market still suffer from low bio-availability and often do not enter the brain significantly.The preparation of dual/multiple ligands of magnesium in which the organic acid not only functions as a carrier but also has synergistically/complementary biological effects is widely unexplored and needs further development. As a result, there is a strong need for dual/multiple magnesium supplements that are non-toxic, stable, prepared via an economically and ecologically attractive route, resulting in high bioavailability of magnesium in vivo, preferably positively influencing cognition/concentration
Developing and testing several AR and VR concepts for SAMSUNG (Benelux) Samsung and Breda University of Applied Sciences decided to work together on developing and testing several new digital media concepts with a focus on VR and gaming. This collaboration has led to several innovative projects and concepts, among others: the organisation of the first Samsung VR jam in which game and media students developed new concepts for SAMSUNG GEAR in 24 hours, the pre-development of a VR therapy concept (Fear of Love) created by CaptainVR, the Samsung Industry Case in which students developed new concepts for SAMSUNG GEAR (wearables), the IGAD VR game pitch where over 15 VR game concepts were created for SAMSUNG VR GEAR and numerous projects in which VR concepts are developed and created using new SAMSUNG technologies. Currently we are co-developing new digital HRM solutions.