Project

Eggxpert

Overview

Project status
Other
Start date
End date
Region

Description

Eggshell particles as bio-ceramic in sustainable bioplastic engineering – ESP-BIOPACK
Plastics make our lives easier in many ways. However, if they are not properly disposed of, they end up in the environment.
Recently, biodegradable biopolymers, such as polylactic acid (PLA) and polyhydroxy alkanoates (PHAs), have moved towards alternatives for applications such as sustainable packaging. The major limitations of these biopolymers are the high cost, which is due to the high cost of the starting materials and the small volumes, and the poor thermal and mechanical properties such as limited processability and low impact resistance. Attempts to modify PHAs have been researched in many ways, such as blending various biodegradable polymers or mixing inorganic mineral fillers. Eggshell (10 million tons per year by 2030) is a natural bio-ceramic mineral with a unique chemical composition of calcium carbonate (>95% calcite). So far it has been regarded as a zero-value waste product, but it could be a great opportunity as raw material to reduce the cost of biopolymers and to improve properties, including the decomposition process at the end-of-life.
In this project, we aim to develop eggshell particles that serve as bio-fillers in biopolymers to lower the cost of the product, to improve mechanical properties and to facilitate the validation of end-of-life routes, therefore, economically enhance the wide applications of such.
The developed bioplastic packaging materials will be applied in SME partner EGGXPERT’s cosmetics line but also in other packaging applications, such as e.g. biodegradable coffee capsules. To be able to realize the proposed idea, the partnership between Chemelot Innovation and Learning Labs (CHILL), EGGXPERT B.V. and the Research Centre Material Sciences of Zuyd University of Applied Sciences is needed to research the physical, mechanical and end-of-life influences of eggshell particles (ESP) in biopolymers such as PLA and PHA and optimize their performance.


© 2024 SURF