Publinova logo
project

MACHINE LEARNING VOOR MKB-PRODUCTIEBEDRIJVEN


Description

Dit voorstel richt zich op het verkennen van machine learning (ML) mogelijkheden om mkb-bedrijven te onder-steunen bij het verbeteren van hun productieplanning en besturing. Uit interviews met verschillende bedrijven is gebleken dat ze worstelen met plannings- en besturingsproblemen, zoals hoge variatie in de klantvraag, onbe-trouwbare voorcalculaties van capaciteitsbehoefte. Bedrijven zijn continu bezig om hun productieproces en de planning- en besturing hiervan te verbeteren. Ze verwachten hierin een volgende stap te zetten door gebruik te maken van de steeds ruimere (real-time) beschikbaarheid van orderstatus en productiedata. Ze worstelen ech-ter met het waarde toevoegend inzetten van de beschikbare data.
Dit KIEM-onderzoek verkent welke bestaande machine learning modellen toepasbaar zijn om de productie planning en besturing van mkb-bedrijven te verbeteren. Deze machine learning modellen kunnen worden inge-zet bij voorspellende analyses om zo te kunnen acteren op bijvoorbeeld bottlenecks in het productieproces.
Het onderzoek vloeit voort uit de het RAAK-mkb project ‘Organized Digital Factory’, waar we met mkb-bedrijven bezig zijn hun data te ontsluiten met digital twinning. Mkb-bedrijven verwachten de ontsloten data met ML-modellen in te zetten om zo de hoge variatie in de klantvraag beter te plannen én de productie sneller bij te sturen.
Met dit KIEM-onderzoek sluiten we aan bij de roadmap Smart Industry op de volgende punten: Cyber Physical Systems, Digital Twin, Mass Customization, Production Management. Daarnaast sluit het aan bij KIA sleutel-technologieën: Data sciencie and data analystics, digital twinning and immersive tecnologies.


Products

This project has no products


Themes



Project status

Ongoing

Start date

End date

Region

Not known

SIA file number

HT.KIEM.01.045