Digital nature can provide a substitute for real nature for those who have limited access to green space, or are confined to their homes, for example during the worldwide COVID-19 lockdown. In a large-scale online survey, respondents (N = 1203) watched videos of digital nature, varying in terms of type of nature (wild versus tended nature) and spaciousness. Results show a significant increase of feelings of connectedness to the community after watching digital nature. Furthermore, tended nature scenes elicited more social aspirations than wild nature scenes. A multiple regression model further shows that living further away from nature was a significant predictor for loneliness scores, while number of nature interactions during a week was not. Results of this study confirm the importance of nature interaction for mental and social wellbeing for the general population and stress the potential of digital nature as a complementary strategy. These findings are of particular relevance to those who lack access to nature due to old age and related mobility constraints or a lockdown.
OBJECTIVE: Loneliness and social isolation are pressing issues that can seriously impact the mental health and well-being of older adults. Interacting with nature can stimulate a feeling of connectedness. However, for older adults, access to nature is often troublesome because of physical limitations and mobility restrictions.METHODS: In the present mixed-method study, 37 older adults (62-99 years old) with varying care needs and mobility restrictions watched a video presenting a walkthrough of a simulated digital nature landscape.RESULTS: Quantitative results show a significant increase in social connectedness scores and enhanced peacefulness after experiencing a digital nature. Qualitative results stress the importance of variations in nature scenery and highlight the influence of contextual and person-related factors including nature experiences throughout the life span and mobility constraints that older adults may face.CONCLUSION: These findings testify to the potential of using digital nature as a complementary strategy when interactions with outdoor nature become increasingly difficult due to old age.
Feelings of disconnectedness and social isolation among older adults are increasingly recognised as important challenges of our times. Interestingly, nature interaction can stimulate social connectedness and enhance perceived social support, indicating that nature can contribute to social wellbeing. However, nature may not always be around or accessible for older adults. In such cases, digital nature could provide an alternative means for enjoying nature's benefits. To identify limitations and restrictions that older adults experience with respect to nature interaction, and to explore preferences with respect to digital nature and their potential for influencing social wellbeing, two studies are reported: a qualitative study comprising focus groups with Dutch care centre residents (N = 26) and a subsequent quantitative study (N = 200) testing effects of digital landscapes on social wellbeing measures. Findings from the focus groups indicate that opportunities for nature interaction and preferences for digital nature vary with mobility restrictions, whereas findings from the quantitative study testify to the potential of digital nature for enhancing social wellbeing and related emotions. These findings extend research on how (digital) nature interventions can contribute to the social wellbeing of older adults and pinpoint essential nature characteristics important for doing so.
Coastal nourishments, where sand from offshore is placed near or at the beach, are nowadays a key coastal protection method for narrow beaches and hinterlands worldwide. Recent sea level rise projections and the increasing involvement of multiple stakeholders in adaptation strategies have resulted in a desire for nourishment solutions that fit a larger geographical scale (O 10 km) and a longer time horizon (O decades). Dutch frontrunner pilot experiments such as the Sandmotor and Ameland inlet nourishment, as well as the Hondsbossche Dunes coastal reinforcement project have all been implemented from this perspective, with the specific aim to encompass solutions that fit in a renewed climate-resilient coastal protection strategy. By capitalizing on recent large-scale nourishments, the proposed Coastal landSCAPE project C-SCAPE will employ and advance the newly developed Dynamic Adaptive Policy Pathways (DAPP) approach to construct a sustainable long-term nourishment strategy in the face of an uncertain future, linking climate and landscape scales to benefits for nature and society. Novel long-term sandy solutions will be examined using this pathways method, identifying tipping points that may exist if distinct strategies are being continued. Crucial elements for the construction of adaptive pathways are 1) a clear view on the long-term feasibility of different nourishment alternatives, and 2) solid, science-based quantification methods for integral evaluation of the social, economic, morphological and ecological outcomes of various pathways. As currently both elements are lacking, we propose to erect a Living Lab for Climate Adaptation within the C-SCAPE project. In this Living Lab, specific attention is paid to the socio-economic implications of the nourished landscape, as we examine how morphological and ecological development of the large-scale nourishment strategies and their design choices (e.g. concentrated vs alongshore uniform, subaqueous vs subaerial, geomorphological features like artificial lagoons) translate to social acceptance.
The Dutch main water systems face pressing environmental, economic and societal challenges due to climatic changes and increased human pressure. There is a growing awareness that nature-based solutions (NBS) provide cost-effective solutions that simultaneously provide environmental, social and economic benefits and help building resilience. In spite of being carefully designed and tested, many projects tend to fail along the way or never get implemented in the first place, wasting resources and undermining trust and confidence of practitioners in NBS. Why do so many projects lose momentum even after a proof of concept is delivered? Usually, failure can be attributed to a combination of eroding political will, societal opposition and economic uncertainties. While ecological and geological processes are often well understood, there is almost no understanding around societal and economic processes related to NBS. Therefore, there is an urgent need to carefully evaluate the societal, economic, and ecological impacts and to identify design principles fostering societal support and economic viability of NBS. We address these critical knowledge gaps in this research proposal, using the largest river restoration project of the Netherlands, the Border Meuse (Grensmaas), as a Living Lab. With a transdisciplinary consortium, stakeholders have a key role a recipient and provider of information, where the broader public is involved through citizen science. Our research is scientifically innovative by using mixed methods, combining novel qualitative methods (e.g. continuous participatory narrative inquiry) and quantitative methods (e.g. economic choice experiments to elicit tradeoffs and risk preferences, agent-based modeling). The ultimate aim is to create an integral learning environment (workbench) as a decision support tool for NBS. The workbench gathers data, prepares and verifies data sets, to help stakeholders (companies, government agencies, NGOs) to quantify impacts and visualize tradeoffs of decisions regarding NBS.
Restoring rivers with an integrated approach that combines water safety, nature development and gravel mining remains a challenge. Also for the Grensmaas, the most southern trajectory of the Dutch main river Maas, that crosses the border with Belgium in the south of Limburg. The first plans (“Plan Ooievaar”) were already developed in the 1980s and were highly innovative and controversial, as they were based on the idea of using nature-based solutions combined with social-economic development. Severe floodings in 1993 and 1995 came as a shock and accelerated the process to implement the associated measures. To address the multifunctionality of the river, the Grensmaas consortium was set up by public and private parties (the largest public-private partnership ever formed in the Netherlands) to have an effective, scalable and socially accepted project. However, despite the shared long term vision and the further development of plans during the process it was hard to satisfy all the goals in the long run. While stakeholders agreed on the long-term goal, the path towards that goal remains disputed and depends on the perceived status quo and urgency of the problem. Moreover, internal and external pressures and disturbances like climate change or the economic crisis influenced perception and economic conditions of stakeholders differently. In this research we will identify relevant system-processes connected to the implementation of nature-based solutions through the lens of social-ecological resilience. This knowledge will be used to co-create management plans that effectively improve the long-term resilience of the Dutch main water systems.