The understanding of charging behavior has been recognized as a crucial element in optimizing roll out of charging infrastructure. While current literature provides charging choices and categorizations of charging behavior, these seem oversimplified and limitedly based on charging data. In this research we provide a typology of charging behavior and electric vehicle user types based on 4.9 million charging transactions from January 2017 until March 2019 and 27,000 users on 7079 Charging Points the public level 2 charging infrastructure of 4 largest cities and metropolitan areas of the Netherlands. We overcome predefined stereotypical expectations of user behavior by using a bottom-up data driven two-step clustering approach that first clusters charging sessions and thereafter portfolios of charging sessions per user. From the first clustering (Gaussian Mixture) 13 distinct charging session types were found; 7 types of daytime charging sessions (4 short, 3 medium duration) and 6 types of overnight charging sessions. The second clustering (Partition Around Medoids) clustering result in 9 user types based on their distinct portfolio of charging session types. We found (i) 3 daytime office hours charging user types (ii) 3 overnight user types and (iii) 3 non-typical user types (mixed day and overnight chargers, visitors and car sharing). Three user types show significant peaks at larger battery sizes which affects the time between sessions. Results show that none of the user types display solely stereotypical behavior as the range of behaviors is more varied and more subtle. Analysis of population composition over time revealed that large battery users increase over time in the population. From this we expect that shifts charging portfolios will be observed in future, while the types of charging remain stable.
DOCUMENT
BACKGROUND: Non-use of and dissatisfaction with ankle foot orthoses (AFOs) occurs frequently. The objective of this study is to gain insight in the conversation during the intake and examination phase, from the clients’ perspective, at two levels: 1) the attention for the activities and the context in which these activities take place, and 2) the quality of the conversation. METHODOLOGY: Semi-structured interviews were performed with 12 AFO users within a two-week period following intake and examination. In these interviews, and subsequent data analysis, extra attention was paid to the needs and wishes of the user, the desired activities and the environments in which these activities take place. RESULTS AND CONCLUSION: Activities and environments were seldom inquired about or discussed during the intake and examination phase. Also, activities were not placed in the context of their specific environment. As a result, profundity lacks. Consequently, orthotists based their designs on a ‘reduced reality’ because important and valuable contextual information that might benefit prescription and design of assistive devices was missed. A model is presented for mapping user activities and user environments in a systematic way. The term ‘user practices’ is introduced to emphasise the concept of activities within a specific environment.
LINK
This study is the first to systematically and quantitatively explore the factors that determine the length of charging sessions at public charging stations for electric vehicles in urban areas, with particular emphasis placed on the combined parking- and charging-related determinants of connection times. We use a unique and large data set – containing information concerning 3.7 million charging sessions of 84,000 (i.e., 70% of) Dutch EV-users – in which both private users and taxi and car sharing vehicles are included; thus representing a large variation in charging duration behavior. Using multinomial logistic regression techniques, we identify key factors explaining heterogeneity in charging duration behavior across charging stations. We show how these explanatory variables can be used to predict EV-charging behavior in urban areas and we derive preliminary implications for policy-makers and planners who aim to optimize types and size of charging infrastructure.
DOCUMENT
Aanleiding Nieuwsuitgeverijen bevinden zich in zwaar weer. Economische malaise en toegenomen concurrentie in het pluriforme medialandschap dwingen uitgeverijen om enerzijds kosten te besparen en tegelijkertijd te investeren in innovatie. De verdere automatisering van de nieuwsredactie vormt hierbij een uitdaging. Buiten de branche ontstaan technieken die uitgeverijen hierbij zouden kunnen gebruiken. Deze zijn nog niet 'vertaald' naar gebruiksvriendelijke systemen voor redactieprocessen. De deelnemers aan het project formuleren voor dit braakliggend terrein een praktijkgericht onderzoek. Doelstelling Dit onderzoek wil antwoord geven op de vraag: Hoe kunnen bewezen en nieuw te ontwikkelen technieken uit het domein van 'natural language processing' een bijdrage leveren aan de automatisering van een nieuwsredactie en het journalistieke product? 'Natural language processing' - het automatisch genereren van taal - is het onderwerp van het onderzoek. In het werkveld staat deze ontwikkeling bekend als 'automated journalism' of 'robotjournalistiek'. Het onderzoek richt zich enerzijds op ontwikkeling van algoritmes ('robots') en anderzijds op de impact van deze technologische ontwikkelingen op het nieuwsveld. De impact wordt onderzocht uit zowel het perspectief van de journalist als de nieuwsconsument. De projectdeelnemers ontwikkelen binnen dit onderzoek twee prototypes die samen het automated-journalismsysteem vormen. Dit systeem gaat tijdens en na het project gebruikt worden door onderzoekers, journalisten, docenten en studenten. Beoogde resultaten Het concrete resultaat van het project is een prototype van een geautomatiseerd redactiesysteem. Verder levert het project inzicht op in de verankering van dit soort systemen binnen een nieuwsredactie. Het onderzoek biedt een nieuw perspectief op de manier waarop de nieuwsconsument de ontwikkeling van 'automated journalism' in Nederland waardeert. Het projectteam deelt de onderzoekresultaten door middel van presentaties voor de uitgeverijbranche, presentaties op wetenschappelijke conferenties, publicaties in (vak)tijdschriften, reflectiebijeenkomsten met collega-opleidingen en een samenvattende white paper.
With increasing penetration rates of driver assistance systems in road vehicles, powerful sensing and processing solutions enable further automation of on-road as well as off-road vehicles. In this maturing environment, SMEs are stepping in and education needs to align with this trend. By the input of student teams, HAN developed a first prototype robot platform to test automated vehicle technology in dynamic road scenarios that include VRUs (Vulnerable Road Users). These robot platforms can make complex manoeuvres while carrying dummies of typical VRUs, such as pedestrians and bicyclists. This is used to test the ability of automated vehicles to detect VRUs in realistic traffic scenarios and exhibit safe behaviour in environments that include VRUs, on public roads as well as in restricted areas. Commercially available VRU-robot platforms are conforming to standards, making them inflexible with respect to VRU-dummy design, and pricewise they are far out of reach for SMEs, education and research. CORDS-VTS aims to create a first, open version of an integrated solution to physically emulate traffic scenarios including VRUs. While analysing desired applications and scenarios, the consortium partners will define prioritized requirements (e.g. robot platform performance, dummy types and behaviour, desired software functionality, etc.). Multiple robots and dummies will be created and practically integrated and demonstrated in a multi-VRU scenario. The aim is to create a flexible, upgradeable solution, published fully in open source: The hardware (robot platform and dummies) will be published as well-documented DIY (do-it-yourself) projects and the accompanying software will be published as open-source projects. With the CORDS-VTS solution, SME companies, researchers and educators can test vehicle automation technology at a reachable price point and with the necessary flexibility, enabling higher innovation rates.
Craft your own audience: How can a technology-driven company use online gaming communities, like Minecraft, to reach and engage a young audience? This project creates a context in which reality is simulated, by having students work together for a real client in an international context. In this project we explore innovative ways in which Samsung can engage younger audiences through Minecraft, the world's best-selling game with almost 140 million monthly players (2023). This project is focused on on educating, researching and developing playable prototypes within Minecraft that demonstrate how online gaming communities can be used to connect technology companies with a new generation of users. Societal issueInclusion of different ages around technology literacy and education (21st century skills).Benefit to societyGlobal inclusive community around education and R&D, higher cultural awareness.Collaborative partnersManchester Metropolitan University; Samsung Benelux.