Circularity and recycling are gaining increased attention, yet the amount of recycled plastic applied in new products remains low. To accelerate its uptake by businesses, it will be useful to empirically investigate the barriers, enablers, needs and, ultimately, requirements to increase uptake of recycled plastic feedstock for the production of new plastic products. During the six focus group sessions we conducted, a value chain approach was used to map the factors that actors face regarding the implementation of recycled materials. The identified factors were structured based on three levels: determining whether a certain factor acted as a barrier or enabler, identifying the steps in the value chain that the factor directly affected and the category it could be subdivided into. The results were then further processed by translating the (rather abstract) needs of businesses into (specific) requirements from industry. This study presented eight business requirements that require actions from other actors in the value chain: design for recycling, optimised waste processing, standardisation, material knowledge, showing possibilities, information and education, cooperation, and regulation and government intervention. The main scientific contributions were the value chain perspective and the applied relevance of the findings. Future studies may delve deeper into the individual factors identified.
MULTIFILE
Circularity and recycling are gaining increased attention, yet the amount of recycled plastic applied in new products remains low. To accelerate uptake by businesses, it will be useful to empirically investigate the main barriers and enablers that organisations experience when using recycled plastic feedstock for the production of new plastic products. In this research, categorisation is threefold: determining whether a certain factor acts as a barrier, enabler or both; identifying the steps in the value chain which the factor directly affects; and a categorisation in regulatory, economic, technical, systemic, organisational and cultural factors. Results from the focus group sessions show that main barriers seem to be: lack of clear policies and (stimulating) regulations, price differences between virgin and recycle materials, lower material quality and uncertainties about quality, availability and reliable stream of recyclate (from sufficient quality), lack of shortterm organisational goals, lack of knowledge, and lack of consumer demand and willingness. Comparing the results from a micro- and meso scale perspective, some factors are more important for certain steps in the value chain but may also (indirectly) influence the activities of others. Other factors affect all steps of the value chain. Moreover, the relevance of a factor may differ per actor depending on its positioning in the value chain and context, which comes along with uncertainties in industry. Further research may focus on extending literature review and address the needs of industry in order to increase uptake of recycled feedstock in new products.
DOCUMENT
In human-controlled environments, areas of wild plants are 'translated' into cultivated landscapes to accommodate social, cultural and economic needs. This article explores indoor, agricultural and (sub)urban landscape in the Netherlands, focusing on the use of plants both indoors and outdoors, and reveals anthropocentric, instrumental and unsustainable practices. The article also presents suggestions for alternative, more ethical and sustainable ways of relating to plants in the Netherlands and beyond. https://www.ecologicalcitizen.net/article.php?t=wilderness-plastic-plants-how-might-get-back-wildness https://www.linkedin.com/in/helenkopnina/
MULTIFILE
In human-controlled environments and in cultivated landscapes, the plants accommodate social, cultural and economic needs. This article will focus on the use of plants for agriculture, urban planning, forestry, environmental education and indoor decoration in The Netherlands. This exploration, based on literature review and observations, reveals mostly anthropocentric, instrumental and unsustainable practices. In urban landscapes, plants are pushed to the margins, if not entirely eradicated. This article shows that the moral recognition of plants is an ethical imperative, which is also critically important in order to achieve environmental sustainability. In line with ecocentric ethics and in the interest of long-term sustainability, this article suggests an alternative, more ethical and sustainable ways of relating to plants in The Netherlands and beyond. This is an Accepted Manuscript of an article published by Taylor & Francis in "Journal of Urbanism: International Research on Placemaking and Urban Sustainability" on 10/11/18 available online: https://doi.org/10.1080/17549175.2018.1527780 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
In human-controlled environments and in cultivated landscapes, the plants accommodate social, cultural and economic needs. This article will focus on the use of plants for agriculture, urban planning, forestry, environmental education and indoor decoration in The Netherlands. This exploration, based on literature review and observations, reveals mostly anthropocentric, instrumental and unsustainable practices. In urban landscapes plants are pushed to the margins, if not entirely eradicated. This article shows that moral recognition of plants is an ethical imperative, which is also critically important to achieve environmental sustainability. In line with ecocentric ethics and in the interest of long-term sustainability, this article suggests alternative, more ethical and sustainable ways of relating to plants in The Netherlands and beyond. This is the Author’s Original Manuscript of an article published by Taylor & Francis in Journal of Urbanism: International Research on Placemaking and Urban Sustainability, on October 2018, available online: https://www.tandfonline.com/doi/full/10.1080/17549175.2018.1527780 https://doi.org/10.1080/17549175.2018.1527780
MULTIFILE
210,000 tons of textile waste is produced in the Netherlands every year - that is equivalent to 350,000,000 pairs of jeans. There are opportunities to use this waste stream as a resource for new materials in a circular economy, however. One such new material is the biocomposite RECURF. This material was developed within the Urban Technology research programme at Amsterdam University of Applied Sciences and consists of a combination of non-rewearable textile fibres and a bio-based plastic. The BiOrigami project sought to explore and develop architectural applications for this new circular biocomposite. Combining Japanese origami with digital production technology, BiOrigami explores possible functional, flexible applications of the biocomposite in interior products with high experiential value for use in circular-economy architecture. Origami techniques give the material important characteristics, making it more constructive and flexible with enhanced acoustic qualities. The use of digital production techniques enables serial production, which could be scaled up at a later stage.
DOCUMENT
Worldwide, plastic cups are used for serving drinks. Some typical examples of large-scale consumption are large concerts and festivals. As a part of the BIOCAS project, which focusses on the valorization of biomass through various routes, a PHA biobased festival cup was developed and created to reduce the impact of current fossil plastics. The role of VHL was to assess the environmental impact. The aim of the report is to inform the BIOCAS-partners about the use of plastic cups, and address the environmental impact in comparison with other types of biobased plastic cups and fossil-based cups. This report can serve as a basis for making choices within all different types of (plastic/biobased) cups. Besides, it can be used as a public communication tool about the environmental impact of different types of (plastic/biobased) cup applications.
DOCUMENT
Podcast door HanzeMag.Plastic maken uit bacteriën: het klinkt bijna te mooi om waar te zijn, maar het kan echt. hoe dan? Hanze-lector Janneke Krooneman legt het uit aan onze dummies!Wat is bioplastic? En hoe krijg je bacteriën zo gek dat ze plastic gaan vormen? Janneke weet precies hoe je bacteriën ’temt’: je laat ze heel veel eten tot ze obese zijn. En zoals mensen eten opslaan als vet, slaan bacteriën het op als plastic, dus al die dikke bacteriën bij elkaar vormen een prachtig biologisch plastic.Om het nog wat concreter te maken heeft Janneke ook enkele producten meegenomen die gemaakt zijn van bioplastic, zoals festivalbekers en lego, dus kijk ook vooral de videoversie van deze podcast, zodat je kunt zien hoe weinig het verschilt van ‘gewoon’ plastic.Presentatie: Maikel van Duinen & Mattheüs DouwesBeeld: Bas SwavingGeluid: Cazism
LINK
Plastic is one of the biggest contributors to pollution of the planet. Due to the low recyclability of oil-based plastics, most plastic is being disposed into the environment. According to plastic oceans, 10 million tons of plastic are dumped into oceans annually. Currently, researchers are developing recycling methods for oil-based plastics and are looking for biobased alternatives. One of these alternatives are a class of polymers called polyhydroxyalkanoates (PHA’s). PHA’s differ from other biobased polymers, due to the process of fabrication. PHA’s are a natural polymer, acting as an energy and carbon storage for different strains of bacteria. Functioning as an energy storage, nature can break down PHA’s and PHA-based waste. (1) Different companies are working on PHA’s production, but a large deviations in physical properties were observed. This research aims to establish a relationship between the chemical and physical properties of the different PHA’s, using gel permeability chromatography (GPC), nuclear magnetic resonance (NMR) and gas chromatography-mass spectroscopy (GC-MS).
DOCUMENT
Nederland raakt langzamerhand vertrouwd met het scheiden van plastic afval. De campagne „Plastic Heroes? maakt burgers bewust van het belang hiervan. „Plastic Heroes? moet ertoe leiden dat eind 2012 42% van al het Nederlandse plastic verpakkingsafval efficiënt wordt gerecycled. Tijdens het WK Voetbal van 2010 in Zuid-Afrika speelde het Nederlands Elftal in een uittenue van volledig gerecycled polyester. De stijlvolle witte shirts en de blauwe broek waren daarmee het meest milieuvriendelijke voetbaltenue uit de historie van het voetbal. Kortom: gerecyclede kunststoffen zijn „hot?. Het Kenniscentrum Design en Technologie van Saxion onderzocht hoe het is gesteld met de kennis en toepassing van gerecyclede kunststoffen in de kunststofverwerkende industrie. Ook werd onderzocht wat dat betekent voor het productontwerpen. Dat gebeurde als onderdeel van het innovatieprogramma „Materialen in Ontwerp?, dat Saxion uitvoert samen met Verenigde Maakindustrie Oost, Industrial Design Centre, D 'Andrea en Evers en Syntens.
MULTIFILE