Cybersecurity threat and incident managers in large organizations, especially in the financial sector, are confronted more and more with an increase in volume and complexity of threats and incidents. At the same time, these managers have to deal with many internal processes and criteria, in addition to requirements from external parties, such as regulators that pose an additional challenge to handling threats and incidents. Little research has been carried out to understand to what extent decision support can aid these professionals in managing threats and incidents. The purpose of this research was to develop decision support for cybersecurity threat and incident managers in the financial sector. To this end, we carried out a cognitive task analysis and the first two phases of a cognitive work analysis, based on two rounds of in-depth interviews with ten professionals from three financial institutions. Our results show that decision support should address the problem of balancing the bigger picture with details. That is, being able to simultaneously keep the broader operational context in mind as well as adequately investigating, containing and remediating a cyberattack. In close consultation with the three financial institutions involved, we developed a critical-thinking memory aid that follows typical incident response process steps, but adds big picture elements and critical thinking steps. This should make cybersecurity threat and incident managers more aware of the broader operational implications of threats and incidents while keeping a critical mindset. Although a summative evaluation was beyond the scope of the present research, we conducted iterative formative evaluations of the memory aid that show its potential.
Internet technology offers a lot of new opportunities for the dissemination of information, sharing of support and consultation of professionals. Innovating professionals from multiple disciplines have begun to exploit the new opportunities for parenting support. The studies presented in this book are meant to deepen our insights in the subject of online parenting support and investigate the feasibility to use single session email consultation to empower parents. This publication includes: - A systematic review of 75 studies on online parenting support. - A meta-analytic review of 12 studies on online tools to improve parenting. - A content analysis of 129 parenting questions and responses in single session email consultation. - An analysis and validation study of the newly developed Guiding the Empowerment Process model. - An evaluation study of the effects of single session email consultation on parental empowerment. The results of this research indicate that the Internet is not only a source of information, but it can also be an instrument for support and training, aiming to improve parental competencies.
Many quality aspects of software systems are addressed in the existing literature on software architecture patterns. But the aspect of system administration seems to be a bit overlooked, even though it is an important aspect too. In this work we present three software architecture patterns that, when applied by software architects, support the work of system administrators: PROVIDE AN ADMINISTRATION API, SINGLE FILE LOCATION, and CENTRALIZED SYSTEM LOGGING. PROVIDE AN ADMINISTRATION API should solve problems encountered when trying to automate administration tasks. The SINGLE FILE LOCATION pattern should help system administrators to find the files of an application in one (hierarchical) place. CENTRALIZED SYSTEM LOGGING is useful to prevent coming up with several logging formats and locations. Abstract provided by the authors. Published in PLoP '13: Proceedings of the 20th Conference on Pattern Languages of Programs ACM.
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
Aanleiding Nieuwsuitgeverijen bevinden zich in zwaar weer. Economische malaise en toegenomen concurrentie in het pluriforme medialandschap dwingen uitgeverijen om enerzijds kosten te besparen en tegelijkertijd te investeren in innovatie. De verdere automatisering van de nieuwsredactie vormt hierbij een uitdaging. Buiten de branche ontstaan technieken die uitgeverijen hierbij zouden kunnen gebruiken. Deze zijn nog niet 'vertaald' naar gebruiksvriendelijke systemen voor redactieprocessen. De deelnemers aan het project formuleren voor dit braakliggend terrein een praktijkgericht onderzoek. Doelstelling Dit onderzoek wil antwoord geven op de vraag: Hoe kunnen bewezen en nieuw te ontwikkelen technieken uit het domein van 'natural language processing' een bijdrage leveren aan de automatisering van een nieuwsredactie en het journalistieke product? 'Natural language processing' - het automatisch genereren van taal - is het onderwerp van het onderzoek. In het werkveld staat deze ontwikkeling bekend als 'automated journalism' of 'robotjournalistiek'. Het onderzoek richt zich enerzijds op ontwikkeling van algoritmes ('robots') en anderzijds op de impact van deze technologische ontwikkelingen op het nieuwsveld. De impact wordt onderzocht uit zowel het perspectief van de journalist als de nieuwsconsument. De projectdeelnemers ontwikkelen binnen dit onderzoek twee prototypes die samen het automated-journalismsysteem vormen. Dit systeem gaat tijdens en na het project gebruikt worden door onderzoekers, journalisten, docenten en studenten. Beoogde resultaten Het concrete resultaat van het project is een prototype van een geautomatiseerd redactiesysteem. Verder levert het project inzicht op in de verankering van dit soort systemen binnen een nieuwsredactie. Het onderzoek biedt een nieuw perspectief op de manier waarop de nieuwsconsument de ontwikkeling van 'automated journalism' in Nederland waardeert. Het projectteam deelt de onderzoekresultaten door middel van presentaties voor de uitgeverijbranche, presentaties op wetenschappelijke conferenties, publicaties in (vak)tijdschriften, reflectiebijeenkomsten met collega-opleidingen en een samenvattende white paper.
Multiple sclerosis (MS) is a severe inflammatory condition of the central nervous system (CNS) affecting about 2.5 million people globally. It is more common in females, usually diagnosed in their 30s and 40s, and can shorten life expectancy by 5 to 10 years. While MS is rarely fatal; its effects on a person's life can be profound, which signifies comprehensive management and support. Most studies regarding MS focus on how lymphocytes and other immune cells are involved in the disease. However, little attention has been given to red blood cells (erythrocytes), which might also be important in developing MS. Artificial intelligence (AI) has shown significant potential in medical imaging for analyzing blood cells, enabling accurate and efficient diagnosis of various conditions through automated image analysis. The project aims to implement an AI pipeline based on Deep Learning (DL) algorithms (e.g., Transfer Learning approach) to classify MS and Healthy Blood cells.