In the book, 40 experts speak, who explain in clear language what AI is, and what questions, challenges and opportunities the technology brings.
DOCUMENT
This papers presents some ideas to use so-called software agents as a software representation of a product not only during manufacturing but also during the whole life cycle of the product. Software agents are autonomous entities capable of collecting useful information about products. By their design and capabilities software agents fit well in the concept of ubiquitous computing. We use these agents in our newly developed manufacturing process. This paper discusses further use of agent technology.
DOCUMENT
Recently, the job market for Artificial Intelligence (AI) engineers has exploded. Since the role of AI engineer is relatively new, limited research has been done on the requirements as set by the industry. Moreover, the definition of an AI engineer is less established than for a data scientist or a software engineer. In this study we explore, based on job ads, the requirements from the job market for the position of AI engineer in The Netherlands. We retrieved job ad data between April 2018 and April 2021 from a large job ad database, Jobfeed from TextKernel. The job ads were selected with a process similar to the selection of primary studies in a literature review. We characterize the 367 resulting job ads based on meta-data such as publication date, industry/sector, educational background and job titles. To answer our research questions we have further coded 125 job ads manually. The job tasks of AI engineers are concentrated in five categories: business understanding, data engineering, modeling, software development and operations engineering. Companies ask for AI engineers with different profiles: 1) data science engineer with focus on modeling, 2) AI software engineer with focus on software development , 3) generalist AI engineer with focus on both models and software. Furthermore, we present the tools and technologies mentioned in the selected job ads, and the soft skills. Our research helps to understand the expectations companies have for professionals building AI-enabled systems. Understanding these expectations is crucial both for prospective AI engineers and educational institutions in charge of training those prospective engineers. Our research also helps to better define the profession of AI engineering. We do this by proposing an extended AI engineering life-cycle that includes a business understanding phase.
LINK
Over the past three years we have built a practice-oriented, bachelor level, educational programme for software engineers to specialize as AI engineers. The experience with this programme and the practical assignments our students execute in industry has given us valuable insights on the profession of AI engineer. In this paper we discuss our programme and the lessons learned for industry and research.
MULTIFILE
This exploration with ChatGPT underscores two vital lessons for human rights law education. First, the importance of reflective and critical prompting techniques that challenge it to critique its responses. Second, the potential of customizing AI tools like ChatGPT, incorporating diverse scholarly perspectives to foster a more inclusive and comprehensive understanding of human rights. It also shows the promise of using collaborative approaches to build tools that help create pluriversal approaches to the study of human rights law.
MULTIFILE
Neighborhood image processing operations on Field Programmable Gate Array (FPGA) are considered as memory intensive operations. A large memory bandwidth is required to transfer the required pixel data from external memory to the processing unit. On-chip image buffers are employed to reduce this data transfer rate. Conventional image buffers, implemented either by using FPGA logic resources or embedded memories are resource inefficient. They exhaust the limited FPGA resources quickly. Consequently, hardware implementation of neighborhood operations becomes expensive, and integrating them in resource constrained devices becomes unfeasible. This paper presents a resource efficient FPGA based on-chip buffer architecture. The proposed architecture utilizes full capacity of a single Xilinx BlockRAM (BRAM36 primitive) for storing multiple rows of input image. To get multiple pixels/clock in a user defined scan order, an efficient duty-cycle based memory accessing technique is coupled with a customized addressing circuitry. This accessing technique exploits switching capabilities of BRAM to read 4 pixels in a single clock cycle without degrading system frequency. The addressing circuitry provides multiple pixels/clock in any user defined scan order to implement a wide range of neighborhood operations. With the saving of 83% BRAM resources, the buffer architecture operates at 278 MHz on Xilinx Artix-7 FPGA with an efficiency of 1.3 clock/pixel. It is thus capable to fulfill real time image processing requirements for HD image resolution (1080 × 1920) @103 fcps.
DOCUMENT
From the article: The ethics guidelines put forward by the AI High Level Expert Group (AI-HLEG) present a list of seven key requirements that Human-centered, trustworthy AI systems should meet. These guidelines are useful for the evaluation of AI systems, but can be complemented by applied methods and tools for the development of trustworthy AI systems in practice. In this position paper we propose a framework for translating the AI-HLEG ethics guidelines into the specific context within which an AI system operates. This approach aligns well with a set of Agile principles commonly employed in software engineering. http://ceur-ws.org/Vol-2659/
DOCUMENT
The Netherlands is known globally for its widespread use of bicycles and some call it a “cycling nation”. Indeed, many Dutch inhabitants own a bike and cycle frequently. Numbers show that 84% of the Dutch inhabitants from age 4 years and older own a bike. Those owners have an average of 1.3 bikes per person. This results in 18 million bikes in the Netherlands and 13.5 million bike owners.6 The Dutch use their bike as a means of transportation, but also for sports and exercise. Bike-use fits well in an active lifestyle and it is highly plausible that cycling is responsible for a large part of the daily physical activity in Dutch youth. It is estimated that Dutch people have on average a 6 months longer life expectancy attributable to bicycle use.7 It seems that the nation itself is well shaped to cycle: no large mountains, only a few small hills, and an extensive layout of cycle paths and routes in every city and village. In many urban areas separate cycle paths are very common. Our results show that many Dutch children use the bike as their way of transportation. It was demonstrated that active transportation is responsible for a large part of schoolrelated physical activity in Dutch youth.8 80% of 12-17 year-old children cycled three or more days to or from school/work.9 This resulted in an ‘A’ for the indicator active transportation (walking is included in the grade as well). Active transport is associated with increased total physical activity among youth.10,11 Also evidence is reported for an association between active transport and a healthier body composition and healthier level of cardiorespiratory fitness among youth. Although Dutch children accumulate a lot of daily physical activity through cycling, it is not enough to meet the current national physical activity guidelines of 60 minutes of moderate-to-vigorous physical activity per day. Even though cycling is an important component to the amount of daily physical activity, Dutch youth are not cycling to health
DOCUMENT