Airports and surrounding airspaces are limited in terms of capacity and represent the major bottleneck in the air traffic management system. This paper proposes a two level model to tackle the integrated optimization problem of arrival, departure, and surface operations. The macroscopic level considers the terminal airspace management for arrivals and departures and airport capacity management, while the microscopic level optimizes surface operations and departure runway scheduling. An adapted simulated annealing heuristic combined with a time decomposition approach is proposed to solve the corresponding problem. Computational experiments performed on real-world case studies of Paris Charles De-Gaulle airport, show the benefits of this integrated approach.
The urban energy transition is crucial for a sustainable future. To support this transition, Digital Twins are employed in an increasing fashion, providing decision makers with data-driven insights from mainly technological perspectives. Based on a case study of a neighbourhood in a Dutch municipality, we argue the need to address social perspectives more explicitly while employing Digital Twins. To this end, we identify three potential strategies for an integrated socio-technological approach for Digital Twins. These strategies are modelling social characteristics at a macro-economic scale, involving stakeholders in participatory approaches, and finally explicitly modelling stakeholder behaviour. Given its promise for our case study, we elaborate this last strategy with a conceptual method that aims to explicitly model citizens’ decision-making processes through an agent-based modelling approach.
The current Covid-19 pandemic has underlined the importance of urban public spaces in achieving health and social well-being (Dobson, 2021; Poortinga et al., 2021), prompting policymakers and urban planners to rethink their approach to the design of these spaces. They now propagate adapting urban public spaces more directly to human needs (Suurenbroek et al., 2019), often at a neighbourhood level, while also embracing a more-than-human perspective that includes the well-being of the natural ecosystem at large (Maller, 2020; Houston et al., 2018). The latter becomes imperative as other shocks and stressors, such as climate change and biodiversity loss, are impending, straining urban spaces and their residents to show resilience in times of complex challenges. “Learning from Covid-19”, a need emerged for new design approaches for public spaces, contributing both to social and ecological resilience.This paper presents results from the research project "From Prevention to Resilience". It moves beyond merely responding to the pandemic by designing social and physical barriers in public space to prevent the virus from spreading. Instead, it seizes the opportunity to explore how an integrated design approach to public space could contribute to social and ecological resilience (Boon et al., 2021). The project, funded by the Dutch organization for health research and care innovation, is a collaboration between the chairs of Spatial Urban Transformation and Civic Interaction Design (AUAS) and an international partner consortium.This paper builds on our compiled database of design strategies addressing the Covid-crisis, expert sessions with a Community of Practitioners, and interviews with Dutch spatial design firms and municipalities. It first introduces a "Design Framework for Neighbourhood Resilience" and its core concepts. Next, it validates this framework through a research-by-design approach. Spatial and social design agencies applied the framework in real-life design cases in Amsterdam and allowed for its empirical grounding and practice-based development. Ultimately, the paper defines a design framework that builds resilience for the well-being of all urban inhabitants and initiates a dialogue between disciplines to address resilience integrally when designing public spaces and forms of civic engagement.ReferencesBoon, B., Nirschl, M., Gualtieri, G., Suurenbroek, F., & de Waal, M. (2021). Generating and disseminating intermediate-level knowledge on multiple levels of abstraction: An exploratory case in media architecture. Media Architecture Biennale 20, 189–193. https://doi.org/10.1145/3469410.3469430Dobson, J. (2021). Wellbeing and blue‐green space in post‐pandemic cities: Drivers, debates and departures. Geography Compass, 15. https://doi.org/10.1111/gec3.12593Houston, D., Hillier, J., MacCallum, D., Steele, W., & Byrne, J. (2018). Make kin, not cities! Multispecies entanglements and ‘becoming-world’ in planning theory. Planning Theory, 17(2), 190–212. https://doi.org/10.1177/1473095216688042 Maller, C. (2020). Healthy Urban Environments: More-than-Human Theories (1st ed.). Routledge, Taylor & Francis Group. https://www.routledge.com/Healthy-Urban-Environments-More-than-Human-Theories/Maller/p/book/9780367459031Poortinga, W., Bird, N., Hallingberg, B., Phillips, R., & Williams, D. (2021). The role of perceived public and private green space in subjective health and wellbeing during and after the first peak of the COVID-19 outbreak. Landscape and Urban Planning, 211, 104092. https://doi.org/10.1016/j.landurbplan.2021.104092 Suurenbroek, F., Nio, I., & de Waal, M. (2019). Responsive public spaces: exploring the use of interactive technology in the design of public spaces. Hogeschool van Amsterdam, Urban Technology.https://research.hva.nl/en/publications/responsive-public-spaces-exploring-the-use-of-interactive-technol-2
In dit project zal een online onderwijsmodule worden ontworpen. In deze module zal een deel van de output van het project Bouwen met Levende Natuur worden verwerkt tot onderwijs. Het maken van online course materiaal binnen de HZ onderwijsonwikkeling, waar zowel echte casuistiek uit de de beroepspraktijk, als gebruik van ICT mogelijkheden centraal staan. Door de modulaire opbouw zal het mogelijk zijn onderdelen in verschillende courses te verwerken. De docent kan dan de module naar eigen wens, en onafhankelijk van de beschikbaarheid van interne of externe gastdocenten, inzetten voor ‘blended learning’. De benadering binnen de learning unit(s) volgt het constructivisme, activiteiten die te maken hebben met kennisoverdracht, zullen derhalve worden afgewisseld met verwerkingsopdrachten. De volledige onderwijsmodule richt zich vooral op onderwijs op het gebied van Coastal Engineering van de opleiding Civiele Techniek (CT), in eerste instantie van de Delta Academy; CT studenten blijken behoefte te hebben aan een uitleg van ecologische principes vanuit vanuit een meer technisch perspectief. De learning units/onderwijsmodule is uiteraard ook beschikbaar voor andere hbo opleidingen. Het geselecteerde gedeelte, de eerste learning unit, zal ook bruikbaar zijn voor de course Integrated Coastal Zone Management (ICZM), waarin oa het concept Building with Nature wordt uitgelegd. In de huidige vorm wordt dit onderdeel op de klassieke manier gebracht, in de vorm van een hoorcollege. De ontwikkeling van online materiaal maakt de afwisseling met het verwerken van de aangebrachte kennis eenvoudiger; de structuur daarvoor wordt in de online versie al aangebracht. Deze learning unit brengt niet alleen wat aanvullende benaderingen vanuit technisch perspectief, maar is ook een aanpassing, die het geheel hestructureert volgens het constructivisme. De course ICZM is een keuze-course, bedoeld voor Aquatische Ecotechnologie (AET), Delta Management (DM) en CT studenten; waar CT studenten meer behoefte hebben aan een technisch perspectief, heeft deze course ook te maken met DM studenten, die juist wat meer kennis zouden moeten maken met meer technische benaderingen.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.
Over a million people in the Netherlands have type 2 diabetes (T2D), which is strongly related to overweight, and many more people are at-risk. A carbohydrate-rich diet and insufficient physical activity play a crucial role in these developments. It is essential to prevent T2D, because this condition is associated with a reduced quality of life, high healthcare costs and premature death due to cardiovascular diseases. The hormone insulin plays a major role in this. This hormone lowers the blood glucose concentration through uptake in body cells. If an excess of glucose is constantly offered, initially the body maintains blood glucose concentration within normal range by releasing higher concentrations of insulin into the blood, a condition that is described as “prediabetes”. In a process of several years, this compensating mechanism will eventually fail: the blood glucose concentration increases resulting in T2D. In the current healthcare practice, T2D is actually diagnosed by recognizing only elevated blood glucose concentrations, being insufficient for identification of people who have prediabetes and are at-risk to develop T2D. Although the increased insulin concentrations at normal glucose concentrations offer an opportunity for early identification/screening of people with prediabetes, there is a lack of effective and reliable methods/devices to adequately measure insulin concentrations. An integrated approach has been chosen for identification of people at-risk by using a prediabetes screening method based on insulin detection. Users and other stakeholders will be involved in the development and implementation process from the start of the project. A portable and easy-to-use demonstrator will be realised, based on rapid lateral flow tests (LFTs), which is able to measure insulin in clinically relevant samples (serum/blood) quickly and reliably. Furthermore, in collaboration with healthcare professionals, we will investigate how this screening method can be implemented in practice to contribute to a healthier lifestyle and prevent T2D.