In this study, we compared the impact of audio-, video-, and text-chat interaction on target language use during online learner-learner interaction and on learner affect amongst adolescent learners of German as a foreign language. Repeated measures and ANOVA analyses revealed a high percentage of target language output in all conditions for all four tasks, especially in text- chat. Audio-chatters produced the most output and used the most meaning negotiation, compensation strategies, self-repair and other-repair strategies. Learners in all conditions gained in enjoyment, willingness to communicate and self-efficacy. Anxiety reduced for text-chatters. Task effects partly determined the quantity of L2 output, while condition effects determined meaning-oriented and form-focused processing.
MULTIFILE
Bio-based and circular building materials and techniques can play an important role in the transition toward a more sustainable construction sector. This study focuses on the Northern Netherlands and explores those competencies (in terms of knowledge, skills, and attitude) required by construction workers to meet thechallenges of material transition. The perspectives on this topic of construction companies, vocational education institutions, and local networking initiatives have been collected and analyzed by using the thematic analysis method. The results indicate that the limited knowledge availability, combined with the restricted experimentation possibilities, shape the current experiences, as well as the positioning of these stakeholders, regarding the desired competencies of construction workers. It is found that mainly attitudinal aspects of the construction workers need to receive particular attention and prioritization. To achieve that, the results highlight the importance of knowledge exchange and awareness-raising initiatives, as well as the development of a flexible, regional, and comprehensive learning environment.
DOCUMENT
A key element in social development is interaction with others, and preterm infants have an increased risk for problems in this aspect. We aimed to gain additional insight into parents’ perception about their preterm child’s social interaction upon reaching school age. Parents informed us about their child being a little fighter, having issues of coping with their disabilities in social contexts, and how their child withdraws from situations that are overlystimulating. They also expressed their concerns about the future, how they encourage their child, and how they experience the transition to primary school. Parents’ experiences concerning the social interaction of their preterm child can be categorized into eight themes of processes in social interaction: child factors, self-regulation, real-time social interaction, long-term social interaction, parental factors, parenting, social environment, and social experiences. Our proposed model of social interaction in preterm infants visualizes theinterrelatedness between these themes in social interaction
DOCUMENT
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
DOK4CT (in Dutch: Digitale Onderwijsmiddelen en Kennisontsluiting for Control Towers)In this project the practical applied knowledge, derived from innovative projects within the “Topsector logistiek”, is made accessible by Breda University and Deltago. This online Control Tower Course is specifically meant for logistic professionals and students in logistic orientated education. The project was made accesible and supported by the NWO, Netherlands Organisation for Scientific Research. The scope of this project is limited to the area of Cross Chain Control Centers (4C) / Control Towers. The educational valorisation will be executed by the development of digital materials. These are used for student education as well as dissemination towards professionals in the logistics sector. Hereby, the interaction between students and professionals is an important additional benefit under the name of “social learning”. For example the interviews that Marcel Wouterse (Deltago and lecturer at Breda University of Applied Sciences) has created with key partners in the logistics sector were recorded and edited by students. By the use of digital educational tools and serious games, the benefits of Control Towers are now visible for students and professionals. The next phase is to introduce the gained knowledge in future organisations in order to support the Netherlands in the top of the logistics sector.Project goalThe goal of this project is to improve the exploitation of fundamental- and applied knowledge in the expertise area of Cross Chain Control Centers (4C) and Control Towers (CT).The tasks are divided in five subprojects:1. Preparations to transfer existing materials in digital learning tools;2. Shape digital education material (Webinars, online platform, knowledge clips and e-learnings)3. Develop and/or use several serious games (Convoy game / Synchromania)4. Promotion of the course to specified target groups (professionals / international students)5. Project managementExcising knowledge regarding Cross Chain Control Centers and Control Towers is used in this project. New knowledge will not be generated. The project focus lies on the disclosure of acquired knowledge by digital learning tools.
Entangled Machines is a project by Mariana Fernández Mora that interrogates the colonial and extractive legacies underpinning artificial intelligence (AI). By introducing slowness and digital kinship as critical frameworks, the project reconceptualises AI as embedded within intricate social and ecological networks, thereby contesting dominant narratives of efficiency and optimisation. Through participatory, practice-based methodologies such as the Material Playground, the project integrates feminist and non-Western epistemologies to articulate alternative models for ethical, sustainable, and equitable AI practices. Over a four-year period, Entangled Machines develops theory, engages diverse communities, and produces artistic outputs to reimagine human-AI interactions. In collaboration with partners including ARIAS Amsterdam, Archival Consciousness, and the Sandberg Institute, the research seeks to foster decolonial and interdisciplinary approaches to AI. Its culmination will be an “Anarchive” – a curated assemblage of artistic, theoretical, and archival outputs – that serves as a resource for rethinking AI’s socio-political and ecological impacts.