Confronted by more and more global sustainabilityrelated challenges, society is increasingly aiming for a circular economy. Wouldn’t it be ideal if we could contribute to an economic model with closed loops, where products and materials that are at the end of their functional life are reused in new products and systems? As the Netherlands aims to have a fully circular economy (i.e., zero net waste) by 2050, circularity is also a critical theme for the Amsterdam Metropolitan Area. ‘Circular City’ is one of the main urban challenges of the Urban Technology research programme of the Amsterdam University of Applied Sciences (AUAS). Its chair of Circular Design & Business and its research group on Digital Production collaborate with companies, lecturers and students on a range of applied research projects in order to advance the knowledge around circular design and business model strategies making use of digital production to encourage the local reuse of discarded urban materials. Amsterdam ArenA, home base of the Ajax football team and a major concert and events venue, is replacing all stadium seats in the run-up to the European Football Championship in 2020 (UEFA Euro 2020), and wishes to do so in a socially responsible manner. With that purpose, Amsterdam ArenA engaged the expertise of the Urban Technology research programme at the AUAS to study the viability reusing the old seats in a circular manner. The research started from the assumption that these discarded seats not only form a large and relatively homogeneous waste stream, but also have an emotional value that can potentially raise their economic value, beyond that of the material alone. For the AUAS this was an important case study, because the Amsterdam ArenA aspires to be a stage for sustainable innovations, reduce its environmental impact and stimulate the local economy. This project could serve as an example for other stadiums and public buildings with substantial waste streams on how to handle discarded products, and rethink how they can prevent waste in the future. With this mission, the AUAS lined up a team of experts on circular design, digital production, business modelling and impact studies to carry out a comprehensive multi-disciplinary study.
MULTIFILE
De hogescholen Saxion in Enschede en Windesheim in Zwolle organiseerden op 15 oktober 2013 een congres over recycling voor ontwerpers en ondernemers. Belangrijkste conclusie: gerecycled materiaal is prima bruikbaar bij nieuwe ontwerpen. Artikel verschenen in het vakblad Product van november 2013
MULTIFILE
Wetenschappelijk artikel gepubliceerd met betrekking tot ' rotocraft access panel from recycled carbon PPS 'A rotorcraft access panel is developed and was successfully flight tested. Utilizing a novel recycling route, the panel is lighter, more cost-effective and of recycled thermoplastic composites. https://doi.org/10.1016/j.repl.2020.08.003 (First published by Elsevier, permission to republish in HBO Kennisbank and Narcis: Marc Allen Group)
MULTIFILE
The production of denim makes a significant contribution to the environmental impact of the textile industry. The use of mechanically recycled fibers is proven to lower this environmental impact. MUD jeans produce denim using a mixture of virgin and mechanically recycled fibers and has the goal to produce denim with 100% post-consumer textile by 2020. However, denim fabric with 100% mechanically recycled fibers has insufficient mechanical properties. The goal of this project is to investigate the possibilities to increase the content of recycled post-consumer textile fibers in denim products using innovative recycling process technologies.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
De kunstgrasberg in Nederland is groeiende. In april 2019 hebben een aantal bedrijven, zijnde ketenpartners, de handen in een geslagen om dit te doen veranderen, en hebben GBN Artificial Grass Recycling (GBN-AGR) opgericht. Dit heeft in juni 2020 geresulteerd in een fabriek voor de recycling van de kunstgrasmatten. De eindproducten van deze fabriek zijn circulair grondstoffen zoals circulair zand, circulair SBR, circulair TPE en RTA. Deze grondstoffen worden op traditionele productiewijze in mallen geperst en waaruit rubbertegels, kantplanken, picknicksets worden vervaardigd. Gezien de hoeveelheid aan kunstgrasmatten is er behoefte vanuit de ketenpartners om meer en hoogwaardige producten te realiseren. In dit onderzoek wordt een verkenning gedaan naar de mogelijkheid om gerecycled kunstgras te gaan 3D printen. Zo dat er in de toekomst hoogwaardige en vernieuwde producten uit te vaardigen zijn. Ook zijn de huidige 3D printbedrijven nog niet bekend zijn met circulaire grondstoffen uit gerecycled kunstgras, aangezien het 3D printfilament daarvan nog niet voor handen is. Via materiaalonderzoek, ontwikkeling van 3D printfilament, testen van het filament wordt de eerste aanzet gegeven om tot een grondstof te komen die voor hoogwaardige producten kan worden ingezet. Tevens wordt een productontwerp voor een product gecreëerd. En wordt er een prototype, eventueel op schaal gefabriceerd met het 3D printfilament afkomst van de circulaire grondstoffen van het gerecycled kunstgras. Het einddoel is om de kunstgrasberg in Nederland te doen krimpen, door: - Aantoonbaar te maken aan de maakindustrie dat gerecycled kunstgras een basisgrondstof kan zijn voor producten. - 3D printen een productiemethode is dat voor bepaalde toepassingen voordelen kan hebben om hoogwaardige producten van gerecycled kunstgras mee te maken, naast de al bestaande traditionele productiemethoden.