Climate change and continuous urbanization contribute to an increased urban vulnerability towards flooding. Only relying on traditional flood control measures is recognized as inadequate, since the damage can be catastrophic if flood controls fail. The idea of a flood-resilient city – one which can withstand or adapt to a flood event without being harmed in its functionality – seems promising. But what does resilience actually mean when it is applied to urban environments exposed to flood risk, and how can resilience be achieved? This paper presents a heuristic framework for assessing the flood resilience of cities, for scientists and policy-makers alike. It enriches the current literature on flood resilience by clarifying the meaning of its three key characteristics – robustness, adaptability and transformability – and identifying important components to implement resilience strategies. The resilience discussion moves a step forward, from predominantly defining resilience to generating insight into “doing” resilience in practice. The framework is illustrated with two case studies from Hamburg, showing that resilience, and particularly the underlying notions of adaptability and transformability, first and foremost require further capacity-building among public as well as private stakeholders. The case studies suggest that flood resilience is currently not enough motivation to move from traditional to more resilient flood protection schemes in practice; rather, it needs to be integrated into a bigger urban agenda.
By 2050, 70% of the population will live in cities. The majority of the persons living in cities will be 60 plus years old. Ageing cities demands for cities environments to adapt to an ageing population. Modern cities though, don’t anticipate fast enough and in an adequate manner to face the challenges due to population-related transitions. Modifying and adapting the built environment with a focus on the aged population could help to support older people facing functional and cognitive decline.
MULTIFILE
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
In line with the ‘Natuur- en milieubeleidsplan Caribisch Nederland 2020-2030 (NMBP)’ the consortium intends with this research proposal to contribute to a prosperous society with a resilient population and healthy natural environment. The Caribbean Netherlands are dealing with a situation where imported vegetables and fruits are mostly imported and hardly affordable. This leads to consuming unhealthy food and high obesities rates as a consequence. A lack of good agricultural practices with regard to water-smart and nature inclusive agriculture, as well as limited coping capacities to deal with hazards and climate change, results in very limited local production and interest. Initiatives that focused only on agrotechnological solutions for food resilient futures turned out to be ineffective due to a lack of local ownership, which jeopardizes sustainability. Moreover, the ‘green’ and ‘blue’ domains are not seen as attractive career perspectives among youth, hampering a bright future for those domains. The aim of this research is to contribute to water-smart and nature inclusive food resilience embedded in a local participatory perspective in the Caribbean Netherlands. To address the above challenges, a living lab approach is adopted, where youth will be trained as (co)-facilitators (WP1) who will contribute to a participatory envisioning process and an articulation of food resilient futures (WP2). Finally, based on the envisioning process local stakeholders will select and implement experiments for food resilient futures followed by dissemination of results among key stakeholders as well as children and youth at the BES islands (WP3). This project strategy will lead to a network of a living lab where professionals and youth work together on food resilient futures. Training manuals and the results of experiments with regard to water and food system alternatives will be used actively to encourage youth to be involved in sustainable agriculture and consumption.
Climate change is increasing the challenges for water management worldwide. Extreme weather conditions, such as droughts and heavy rainfall, are increasingly limiting the availability of water, especially for agriculture. Nature-Based Solutions (NBS) offer potential solutions. They help to collect and infiltrate rainwater and thus play an important role in climate adaptation.Green infrastructure, such as rain gardens (sunken plant beds) and wadis (sunken grass fields for temporary storage of rainwater), help to restore the urban water balance. They reduce rainwater runoff, stabilize groundwater levels and solve problems with soil moisture and temperature. Despite these advantages, there is still much ignorance in practice about the possibilities of NBS. To remedy this, freely accessible knowledge modules are being developed that can help governments and future employees to better understand the application of these solutions. This research, called GINA (Green Infrastructure in Urban Areas), aims to create more sustainable and climate-resilient cities by developing and sharing knowledge about NBS, and supports local governments and students in effectively deploying these green infrastructures.