© Springer International Publishing AG 2016. A serious game needs to combine a number of different aspects to help the end user in reaching the desired effects. This requires incorporating a broad range of different aspects in the design, stemming from a broad range of different fields of expertise. For designers, developers, researchers, and other stakeholders it is not straightforward how to organize the design and development process, to make sure that these aspects are properly addressed. In this chapter we will discuss a number of ways of organizing the design and development process and various models that support specific design decisions during this process, concluding with a discussion of design patterns for serious games.
DOCUMENT
An important step in the design of an effective educational game is the formulation of the to-be-achieved learning goals. The learning goals help shape the content and the flow of the entire game, i.e. they provide the basis for choosing the game’s core (learning) mechanics. A mistake in the formulation of the learning goals or the resulting choice in game mechanics can have large consequences, as the game may not lead to the intended effects. At the moment, there are many different methods for determining the learning goals; they may be derived by a domain expert, based on large collections of real-life data, or, alternatively, not be based on anything in particular. Methods for determining the right game mechanics range from rigid taxonomies, loose brainstorming sessions, to, again, not any method in particular. We believe that for the field of educational game design to mature, there is a need for a more uniform approach to establishing the learning goals and translating them into relevant and effective game activities. This paper explores two existing, non-game design specific, methods to help determine learning goals and the subsequent core mechanics: the first is through a Cognitive Task Analysis (CTA), which can be used to analyse and formalize the problem and the knowledge, skills, attitudes that it is comprised of, and the second is through the Four Components Instructional Design (4C-ID), which can be used to determine how the task should be integrated into an educational learning environment. Our goal is to see whether these two methods provide the uniform approach we need. This paper gives an overview of our experiences with these methods and provides guidelines for other researchers on how these methods could be used in the educational game design process.
DOCUMENT
In this chapter, we propose an ethical framework for serious game design, which we term the Ecosystem for Designing Games Ethically (EDGE).EDGE expands on Zagal’s categorization of ethical areas in game design by incorporating the different contexts of design and their use. In addition, we leverage these contexts to suggest four guidelines that support Ethical Stewardship in serious game design. We conclude by discussing a number of specific areas inwhich ethics plays a role in serious game design. These include games in (a) amilitary context, (b) the consideration of privacy issues, and (c) the evaluation ofgame design choices.
DOCUMENT
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.
Inzet van serious games als scholingsinstrument voor zorgprofessionals of als patiëntinterventie neemt sterk toe. Serious games kunnen kosten besparen en zorgkwaliteit verbeteren. (Potentiële) afnemers vragen, in lijn met het medische onderzoeksparadigma, vaak naar de klinische effectiviteit (internal validity) van deze games. Het gros van de Nederlandse game-ontwikkelaars bestaat echter uit kleine ondernemingen die het aan middelen en expertise ontbreekt om de hiervoor benodigde longitudinale onderzoekstrajecten uit te voeren. Tegelijkertijd tonen mkb’ers, meestal zonder ervan bewust te zijn, tijdens het game-ontwikkelproces al verschillende validiteitsvormen aan volgens het design-onderzoeksparadigma (face validity, construct validity, e.d.). Door dit niet bij hun afnemers kenbaar te maken, komt een constructieve dialoog over validiteit moeilijk op gang en lopen mkb’ers opdrachten mis. Het ontbreekt hen aan een begrippenkader en praktische handvatten. Bestaande raamwerken zijn nog te theorie-gedreven. Om mkb’ers te helpen de 'clash' te overbruggen tussen het medische en het design-onderzoeksparadigma, ontwikkelen lectoraten ICT-innovaties in de Zorg (Hogeschool Windesheim, penvoerder) en Serious Gaming (NHL Stenden Hogeschool) samen met elf mkb’ers, afnemers, studenten en experts in een learning community drie hulpmiddelen: •Checklist: praktische mkb-richtlijnen voor het vaststellen van validiteit; •Beslisboom: op basis waarvan mkb’ers onderbouwd de juiste validatiemethode kunnenselecteren; •Serious game: om samen met (potentiële) afnemers te spelen, zodat verschillende soortenvaliditeit expliciet benoemd worden. De hulpmiddelen worden inhoudelijk gevoed door casestudies waarin mkb’ers gevolgd worden in hoe validiteit momenteel wordt vastgesteld en geëxpliciteerd in het ontwikkelproces. Vervolgens brengen we de ontworpen hulpmiddelen in de mkb-praktijk voor evaluatie. Opgeleverde hulpmiddelen stellen mkb’ers in staat werkbare validatiemethoden toe te passen gedurende het game-ontwikkelproces om acceptabele bewijslast op te leveren voor potentiële afnemers, waardoor hun marktpositie versterkt. Ook draagt het project bij aan operationalisering van bestaande raamwerken en kunnen de hulpmiddelen in game design-curricula worden geïncorporeerd.
Lectorate, part of NHL Stenden Hogeschool