Abstract Technology has a major impact on the way nurses work. Data-driven technologies, such as artificial intelligence (AI), have particularly strong potential to support nurses in their work. However, their use also introduces ambiguities. An example of such a technology is AI-driven lifestyle monitoring in long-term care for older adults, based on data collected from ambient sensors in an older adult’s home. Designing and implementing this technology in such an intimate setting requires collaboration with nurses experienced in long-term and older adult care. This viewpoint paper emphasizes the need to incorporate nurses and the nursing perspective into every stage of designing, using, and implementing AI-driven lifestyle monitoring in long-term care settings. It is argued that the technology will not replace nurses, but rather act as a new digital colleague, complementing the humane qualities of nurses and seamlessly integrating into nursing workflows. Several advantages of such a collaboration between nurses and technology are highlighted, as are potential risks such as decreased patient empowerment, depersonalization, lack of transparency, and loss of human contact. Finally, practical suggestions are offered to move forward with integrating the digital colleague
DOCUMENT
Research demonstrated a large variety regarding effects of light (e.g. health, performance, or comfort effects). Since human health is related to each individual separately, the lighting conditions around these individuals should be analysed individually as well. This paper provides, based on a literature study, an overview identifying the currently used methodologies for measuring lighting conditions in light effect studies. 22 eligible articles were analysed and this resulted in two overview tables regarding the light measurement methodologies. In 70% of the papers, no measurement details were reported. In addition, light measurements were often averaged over time (in 84% of the papers) or location level (in 32% of the papers) whereas it is recommended to use continuous personal lighting conditions when light effects are being investigated. Conclusions drawn in light effect studies based on personal lighting conditions may be more trusting and valuable to be used as input for an effect-driven lighting control system.
LINK
Background: There is still limited evidence on the effectiveness and implementation of smoking cessation interventions for people with severe mental illness (SMI) in Dutch outpatient psychiatric settings. The present study aimed to establish expert consensus on the core components and strategies to optimise practical implementation of a smoking cessation intervention for people treated by Flexible Assertive Community Treatment (FACT) teams in the Netherlands. Design: A modified Delphi method was applied to reach consensus on three core components (behavioural counselling, pharmacological treatment and peer support) of the intervention. The Delphi panel comprised five experts with different professional backgrounds. We proposed a first intervention concept. The panel critically examined the evolving concept in three iterative rounds of 90 min each. Responses were recorded, transcribed verbatim and thematically analysed. Results: Overall, results yielded that behavioural counselling should focus on preparation for smoking cessation, guidance, relapse prevention and normalisation. Pharmacological treatment consisting of nicotine replacement therapy (NRT), Varenicline or Bupropion, under supervision of a psychiatrist, was recommended. The panel agreed on integrating peer support as a regular part of the intervention, thus fostering emotional and practical support among patients. Treatment of a co-morbid cannabis use disorder needs to be integrated into the intervention if indicated. Regarding implementation, staff’s motivation to support smoking cessation was considered essential. For each ambulatory team, two mental health care professionals will have a central role in delivering the intervention. Conclusions: This study provides insight into expert consensus on the core components of a smoking cessation intervention for people with SMI. The results of this study were used for the development of a comprehensive smoking cessation program.
DOCUMENT
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
Alcohol use disorder (AUD) is a pattern of alcohol use that involves having trouble controlling drinking behaviour, even when it causes health issues (addiction) or problems functioning in daily (social and professional) life. Moreover, festivals are a common place where large crowds of festival-goers experience challenges refusing or controlling alcohol and substance use. Studies have shown that interventions at festivals are still very problematic. ARise is the first project that wants to help prevent AUD at festivals using Augmented Reality (AR) as a tool to help people, particular festival visitors, to say no to alcohol (and other substances). ARise is based on the on the first Augmented Reality Exposure Therapy (ARET) in the world that we developed for clinical treatment of AUD. It is an AR smartphone driven application in which (potential) visitors are confronted with virtual humans that will try to seduce the user to accept an alcoholic beverage. These virtual humans are projected in the real physical context (of a festival), using innovative AR glasses. Using intuitive phone, voice and gesture interactions, it allows users to personalize the safe experience by choosing different drinks and virtual humans with different looks and levels of realism. ARET has been successfully developed and tested on (former) AUD patients within a clinical setting. Research with patients and healthcare specialists revealed the wish to further develop ARET as a prevention tool to reach people before being diagnosed with AUD and to extend the application for other substances (smoking and pills). In this project, festival visitors will experience ARise and provide feedback on the following topics: (a) experience, (b) awareness and confidence to refuse alcohol drinks, (c) intention to use ARise, (d) usability & efficiency (the level of realism needed), and (e) ideas on how to extend ARise with new substances.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).