[ENG] Water Nation is an artistic research project and short film exploring archival footage of the Institute of Sound & Vision of flooding in The Netherlands. Told from the artist’s perspective it is a reflection on how to connect and make climate change and the Dutch history around water and flooding palpable. Through artistic and AI experiments a short animated film was created. [NL] Water Nation is een artistiek onderzoeksproject en een korte film waarin archiefmateriaal van het Instituut voor Beeld & Geluid over overstromingen in Nederland is verwerkt. Vanuit het perspectief van de kunstenaar is het een reflectie op hoe klimaatverandering en de Nederlandse geschiedenis rond water en overstromingen invoelbaar kunnen worden gemaakt en met elkaar kunnen worden verbonden. Door middel van artistieke en AI-experimenten werd een korte animatiefilm gecreëerd.
LINK
With climate change and urban development, water systems are changing faster than ever. Currently, the ecological status of water systems is still judged based on single point measurements, without taking into account the spatial and temporal variability of water quality and ecology. There is a need for better and more dynamic monitoring methods and technologies. Aquatic drones are becoming accessible and intuitive tools that may have an important role in water management. This paper describes the outcomes, field experiences and feedback gathered from the use of underwater drones equipped with sensors and video cameras in various pilot applications in The Netherlands, in collaboration with local water managers. It was observed that, in many situations, the use of underwater drones allows one to obtain information that would be costly and even impossible to obtain with other methods and provides a unique combination of three-dimensional data and underwater footage/images. From data collected with drones, it was possible to map different areas with contrasting vegetation, to establish connections between fauna/flora species and local water quality conditions, or to observe variations of water quality parameters with water depth. This study identifies opportunities for the application of this technology, discusses their limitations and obstacles, and proposes recommendation guidelines for new technical designs
LINK
The WATERMINING project aims to bring solutions to improve the circularity of water treatment and the resulting by-products of these processes. Achieving a deep understanding of the barriers potentially hindering the development of circular water solutions is crucial to design policies that enable the deployment of these techniques. To do this, the WATERMINING project organizes Communities of Practice (CoPs), where stakeholders from the WATERMINING case study projects analysed these market barriers and proposal (policy) measures to clear these.CoPs in the case studies of Lampedusa in Italy and Almería in Spain focused on sea water desalination. The case studies of Faro-Olhão in Portugal, Larnaca in Cyprus and La Llagosta in Spain have been discussed by CoP stakeholders in terms of barriers in circular urban wastewater treatment. The CoP in the Netherlands focused on circular industrial waste water treatment at the Westlake plant at Rotterdam. The barriers defined by the stakeholders in the CoPs were discussed by the WATERMINING partners at the consortium meeting in Palermo (Italy, September 2022), and presented at the WATERMINING Market and Policy workshop in Brussels (Belgium, February 2023).Addressing the three above-mentioned categories of circular water solutions, common barriers identified across all WATERMINING’s case studies are the following. First, stakeholders report a lack of incentives to implement circular solutions, as mainstream linear practices are generally cheaper.This could be addressed by de-encouraging linear techniques by making the disposal of their byproducts (such as brine) more expensive. Another solution could be to provide added value to circular solutions through the monetization of their additional products and services. Subsidies can support in lowering production costs or prices of materials recovered from sea- and wastewater treatment to level the playing field with conventionaly derived material.Another commonly mentioned barrier is the difficulty to introduce products obtained from circular water treatment in the market, both because of a lack of public acceptance and legal constraints stemming from products being regarded as waste. Information campaigns and the revision of current regulatory frameworks to allow these products entering the market would expand the revenue sources from these techniques and improve the circularity of the system. Standardising the circular water treatment technologies in the market could support this, whereby best available techniques reference documents of the EU (BREFs) could be an effective instrument, especially when tapping into an ongoing BREF writing or updating process.Across the case studies and replication studies it has been mentioned that current legislation in case study countries exclude ‘watermined’ products from food and/or other applications. Criteria for endof-waste status of ‘watermined’ products, which would determine whether a product, such as Kaumera which is produced from urban wastewater treatment, is eligible as a fertiliser in agriculture, are usually determined at the level of the EU, but Member States could interpret these more stringently (Member State-level criteria cannot be weaker than the EU-level ones). In this respect it has been recommended to enhance knowledge exchange across Member States, e.g., by creating anEU-based unit (or competencies within an existing unit) to promote cooperation among EU Member States and regional authorities concerning the production, sale and use of products recovered from wastewater treatment.Another common perception stakeholders report is the widespread conservatism in the water sector. Water treatment actors traditionally have a focus on purifying water and supplying this to the market. Generating products from waste streams is often something that market actors are less familiar with. Among other solutions, the ‘Dutch model’ has been recommended as a way to create national centres for the development of knowledge and technology for water management, which would serve as an R&D accelerator.
LINK
Inland surface water systems are characterized by constant variations in time and space. The increased pressure, of natural or anthropic origin, as a consequence of climate change, population growth and urban development accentuate these changes. Effective water management is key to achieve European waterquality and ecological goals. This is only possible with accurate and extensive knowledge of water systems.The collection of data using platforms such as underwater, water surface or aerial drones is gradually becoming more common and appraised. However, these are not yet standard practice in watermanagement. This work addresses the receptivity of water managers in the Netherlands towards underwater drone technology:· Listing and testing of suitable applications;· Comparison between data requirements of water managers (e.g. legislation) and data thatunderwater drones can provide;· Identification of features should R&D projects focus to increase the interest of the water sector.
DOCUMENT
Antibiotics are a factor in developing antibiotic resistance in the environment. Outbreaks due to pathogens and resistant bacteria are an emerging issue in this decade. Resistance of Escherichia coli to two groups of antibiotics has been revised recently by the World Health Organization (WHO). These data showed that bacteria have already developed resistance to third and fourth group of antibiotics. The WHO report on surveillance and antibiotics consumption evaluation showed that antibiotic consumption varies in EU countries. Outbreaks have increased in parallel to these data depending on country, season, sex, and age group. This chapter revises the routes of spreading and surveillance of E. coli. There is a particular focus on water sources including hospitals, urban wastewater treatment plants (UWTPs), diffuse sources, and water reuse. Extensively revised data are given on the control techniques by biological and advanced processes. The emerging issue of gene transfer control in parallel to the control of bacteria is expressed. A detailed literature survey of emerging technologies of photocatalysis and nanoparticles is given.
LINK
The Zhanghe irrigation system (ZIS) is located in the Yangtze River Basin approximately 200 km west of Wuhan in Hubei Province. The reservoir was designed for multiple uses—irrigation, flood control, domestic water supply, industrial use, aquaculture, and hydropower. Over a period of more than 30 years a steadily increasing amount of water has been transferred from irrigation to other uses. Activities on the part of government, irrigation system managers, and farmers made this transfer possible with only modest decline in rice production. Most important factor was the steady increase in rice yields. The water pricing system provided an incentive for ZIS to reduce irrigation releases. With the steady decline in releases, farmers were forced to find ways to save water. Farmers improved existing ponds and built new ones to store water (improved infrastructure). Access to pond water on demand facilitated the adoption of alternate wetting and drying (technology) particularly in dry years. The establishment of volumetric pricing (price policy) and water user associations (institutions) may also have provided incentives for adoption of AWD, but more research is needed to establish their impact. These activities taken together can be seen as potentially complementary measures. Farmers received no direct compensation for the transfer of water, but recently farm taxes have been reduced or altogether abolished. Further reduction in water releases from the ZIS reservoir could adversely affect rice production in normal or dry years.
DOCUMENT
This paper investigate to use of information technology, i.e. machine learning algorithms for water assessment in Timor-Leste. It is essential to access clean water to ensure the safety for humans and others livings in this world. The Water Quality Index (WQI) is the standard tool for assessing water quality, which can be calculated from physicochemical and microbiological parameters. However, in developing countries, it is continuing need to bring water and energy for the most disadvantaged, make it necessary to find new solutions. In such case, missing-value imputation and machine learning models are useful for classifying water samples into suitable or unsuitable with significant accuracy. Some imputation methods were tested, and four machine learning algorithms were explored: logistic regression, support vector machine, random forest, and Gaussian naïve Bayes. We obtained a dataset with 368 observations from 26 groundwater sampling points in Dili city of Timor-Leste. According to experimental results, it is found that 64% of the water samples are suitable for human consumption. We also found k-NN imputation and random forest method were the clear winners, achieving 96% accuracy with three-fold cross validation. The analysis revealed that some parameters significantly affected the classification results.
DOCUMENT
How do policy analysts perceive the various roles that Models, Simulations and Games (MSG) have, or can have in Integrated Water Resources Management (IWRM)? Fifty-five policy analysts in water management in The Netherlands and China were interviewed, following the procedure of the Q-method. Comparative analysis of the combined quantitative and qualitative data show that: (1) The debate on the role of MSG for IWRM is structured around five frames in The Netherlands and three frames in China. (2) The frames in The Netherlands and China are significantly different. (3) In China, there is a predominant frame that perceives MSG for IWRM as data driven simulation technology for rationalization of water management, which is less significant in The Netherlands. (4) The reverse is true with regard to MSG for stakeholder interaction, learning and integrated assessment, which are significant frames in The Netherlands, but not in China. The conclusion is that frame differences can easily confuse professional and academic debate about MSG for water management; within the same institutional and cultural context, but even more so in Netherlands-China co-operation projects. Frames are also relevant when designing, using or evaluating innovative methods for integrated water resources management.
DOCUMENT
Urban communities are particularly vulnerable to the future demand for food, energy and water, and this vulnerability is further exacerbated by the onset of climate change at local. Solutions need to be found in urban spaces. This article based around urban design practice sees urban agriculture as a key facilitator of nexus thinking, needing water and energy to be productive. Working directly with Urban Living Labs, the project team will co-design new food futures through the moveable nexus, a participatory design support platform to mobilize natural and social resources by integrating multi-disciplinary knowledge and technology. The moveable nexus is co-developed incrementally through a series of design workshops moving around living labs with the engagement of stakeholders. The methodology and the platform will be shared outside the teams so that the knowledge can be mobilized locally and globally.
DOCUMENT
Assistive Technology (AT) is any technology that supports people with functional difficulties to perform their daily activities with less difficulty and/or obstruction, thus contributing to a more fulfilling life. This refers to people of all ages and to all kinds of functional limitations, either permanent or temporary. Assistive products can be traditional physical products, such as wheelchairs, eyeglasses, hearing aids, or prostheses, but they can also be special input devices, care robots, computers with accessible software, apps for smartphones, home automation solutions, virtual realities, etc. It is essential to understand that AT involves more than just familiar products, and that it also includes knowledge about the personalized selection of appropriate solutions, provisions, and services, as well as the training of all parties involved, the measurement of outcomes and impacts, awareness of ethical issues, etc.
DOCUMENT