As many in society work towards global sustainability, we live at a time when efforts to conserve biodiversity and geodiversity, and combat climate change, take place simultaneously with land grabs by large corporations, food insecurity, and human displacement through an ecological breakdown. Many of us seek to reconcile more-than-human nature and human nature and to balance intrinsic value and the current human expansion phase. These and other challenges will fundamentally alter the way people, depending on their worldview and ethics, relate to communities and the environment. While environmental problems cannot be seen as purely ecological because they always involve people, who bring to the environmental table their different assumptions about nature and culture, so are social problems connected to environmental constraints. Similarly, social problems are fundamentally connected to environmental constraints and ecological health. While nonhumans cannot bring anything to this negotiating table, the distinct perspective of this book is that there is a need to consider the role of nonhumans as equally important stakeholders – albeit without a voice. This book develops an argument that human-environmental relationships are set within ecological reality and ecological ethics. Rather than being mutually constitutive processes, humans have obligate dependence on nature, not vice versa. We argue that over-arching ecological ethics is necessary to underpin conservation in the long-term. This requires a holistic ‘justice’, where both social justice (for humans) and ecological justice (for nature) are entwined. However, given the escalating environmental crisis and major extinction event we face, and given that social justice has been dominant for centuries, we believe that in many cases ecojustice will need to be prioritized. This will depend on the situation, but we feel that under ecological ethics, holistic ethics cannot always allow social justice to dominate, hence there is an urgent need to prioritize ecojustice today. Accordingly, this book will deal with questions of both social and ecological justice, putting forth the idea that justice for both humans and nonhumans and their habitats can only be achieved simultaneously. This book will explore the following questions: What is the relationship between social and ecological justice? How might we integrate social and ecological justice? What are the major barriers to achieving this simultaneous justice? How can these barriers be overcome? What are the major debates in conservation relevant to this? doi: 10.1007/978-3-030-13905-6 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Over the past few years a growing number of artists have critiqued the ubiquity of identity recognition technologies. Specifically, the use of these technologies by state security programs, tech-giants and multinational corporations has met with opposition and controversy. A popular form of resistance to recognition technology is sought in strategies of masking and camouflage. Zach Blas, Leo Selvaggio, Sterling Crispin and Adam Harvey are among a group of internationally acclaimed artists who have developed subversive anti-facial recognition masks that disrupt identification technologies. This paper examines the ontological underpinnings of these popular and widely exhibited mask projects. Over and against a binary understanding and criticism of identity recognition technology, I propose to take a relational turn to reimagine these technologies not as an object for our eyes, but as a relationship between living organisms and things. A relational perspective cuts through dualist and anthropocentric conceptions of recognition technology opening pathways to intersectional forms of resistance and critique. Moreover, if human-machine relationships are to be understood as coming into being in mutual dependency, if the boundaries between online and offline are always already blurred, if the human and the machine live intertwined lives and it is no longer clear where the one stops and the other starts, we need to revise our understanding of the self. A relational understanding of recognition technology moves away from a notion of the self as an isolated and demarcated entity in favour of an understanding of the self as relationally connected, embedded and interdependent. This could alter the way we relate to machines and multiplies the lines of flight we can take out of a culture of calculated settings.
AbstractHistorically, epidemics and plagues are repeatedly reported to have happened since the ancient civilizations (Egypt, Greece, Rome and imperial China). Most known examples of a devastating global pandemics in recent history are the ‘Black Death’ (14th century) and the global influenza (1918-1919), also known as ‘Spanish Flu’, that has killed nearly 50 million people in the world. Even thoughpandemics may vary in their dimensions, length (short vs. long), scope (local/regional, national, global) and severity of effects (minimal effects or maximal effects), they all represent distinct exogenous and endogenous shocks that have far reaching effects on population, health, economy and other societal domains.Currently, the Covid-19 pandemic has relentlessly spreaded around the world, leaving behind destructive marks on health, populations, economies and societies. The Covid-19 could spread quickly around the globe because of the current structure of the global economy, which is highly interconnected through sophisticated global transport networks. An important characteristic of a suchnetworked complex system is it vulnerability to unattended events of systemic risk such as the Covid-19 pandemic for example. These systemic risks cause substantial cascading effects, which lead to extreme outcomes that could permanently alter economic, environmental, and social systems.In this article, we first, present, discuss and analyze the potential impacts of the Covid-19 on global economy, trade and supply chains, by focusing on Europe and/or the Netherlands. Second, we examine the effects of the Covid-19 crisis on the shipping industry and on the hub ports and the policy measures that have been applied by different countries around the world.
Uit cijfers van het CBS zien we dat de vraag naar biologische producten achterblijft. De meerprijs die consumenten moeten neerleggen voor biologische productalternatieven blijkt een belangrijke belemmering te zijn voor de overstap naar biologisch. Hoe kunnen we deze gepercipieerde prijsbarrière bij de consument overkomen?
Wijk- en buurtgericht werken vanuit het perspectief van de burger is een belangrijk uitgangspunt in het sociaal en ruimtelijk domein. Echter, burgerparticipatie is vaak veeleisend en weinig inclusief en eindigen regelmatig in een teleurstelling (Verloo, 2023). Professionals hebben behoefte aan alternatieven om samen te werken met inwoners als gelijkwaardige bron van kennis. Bindkracht10 en het Lectoraat Versterken van Sociale Kwaliteit van de HAN hebben samen hiervoor de ‘Wijkwaardenkaart’ ontwikkeld. Dit is een narratieve gesprekstool voor professionals en wijkbewoners die buurt- of wijkgericht werken. De tool heeft twee onderdelen: de gesprekskaart en de praatplaat. Professionals ervaren dat de praatplaat relatief duur en arbeidsintensief is waardoor de dialoog over de wijkwaarden nauwelijks opgang komt. Deze dialoog is nodig om daadwerkelijk het eigenaarschap van inwoners over hun eigen leefomgeving te vergroten. Daarom willen professionals een digitale tool ontwikkelen die hier meer mogelijkheden toe biedt. Dit doen we samen met sociale professionals van Bindkracht10, woningcorporatie Talis, Frank Los Weer een Los, de wijkraad Venlo-Oost en het Lectoraat Media Design. De centrale vraagstelling is: Hoe kunnen we een digitale tool ontwikkelen voor sociale professionals om inwoners eigenaarschap te laten ervaren over hun eigen leefomgeving? We volgen het ‘design thinking proces’. In het eerste werkpakket verkennen we in een focusgroep de wensen en behoeften voor de digitale tool. We kijken hierbij ook naar toegankelijkheid en inclusie. In het tweede werkpakket werken we in een focusgroep de ontwerpprincipes uit en kiezen we concrete ideeën uit voor het ontwerp. Op basis hiervan wordt een prototype ontwikkeld. In het derde werkpakket testen we dit prototype uit in de Nijmeegse wijk Lindenholt en in Venlo-Oost en evalueren we. Op basis van de evaluatie wordt het prototype aangescherpt. In de laatste fase schrijven we een handreiking en delen we onze kennis en de tool in het netwerk en het onderwijs.
In this proposal, a consortium of knowledge institutes (wo, hbo) and industry aims to carry out the chemical re/upcycling of polyamides and polyurethanes by means of an ammonolysis, a depolymerisation reaction using ammonia (NH3). The products obtained are then purified from impurities and by-products, and in the case of polyurethanes, the amines obtained are reused for resynthesis of the polymer. In the depolymerisation of polyamides, the purified amides are converted to the corresponding amines by (in situ) hydrogenation or a Hofmann rearrangement, thereby forming new sources of amine. Alternatively, the amides are hydrolysed toward the corresponding carboxylic acids and reused in the repolymerisation towards polyamides. The above cycles are particularly suitable for end-of-life plastic streams from sorting installations that are not suitable for mechanical/chemical recycling. Any loss of material is compensated for by synthesis of amines from (mixtures of) end-of-life plastics and biomass (organic waste streams) and from end-of-life polyesters (ammonolysis). The ammonia required for depolymerisation can be synthesised from green hydrogen (Haber-Bosch process).By closing carbon cycles (high carbon efficiency) and supplementing the amines needed for the chain from biomass and end-of-life plastics, a significant CO2 saving is achieved as well as reduction in material input and waste. The research will focus on a number of specific industrially relevant cases/chains and will result in economically, ecologically (including safety) and socially acceptable routes for recycling polyamides and polyurethanes. Commercialisation of the results obtained are foreseen by the companies involved (a.o. Teijin and Covestro). Furthermore, as our project will result in a wide variety of new and drop-in (di)amines from sustainable sources, it will increase the attractiveness to use these sustainable monomers for currently prepared and new polyamides and polyurethanes. Also other market applications (pharma, fine chemicals, coatings, electronics, etc.) are foreseen for the sustainable amines synthesized within our proposition.