Background: The environment affects children’s energy balance-related behaviors to a considerable extent. A context-based physical activity and nutrition school- and family-based intervention, named KEIGAAF, is being implemented in low socio-economic neighborhoods in Eindhoven, The Netherlands. The aim of this study was to investigate: 1) the effectiveness of the KEIGAAF intervention on BMI z-score, waist circumference, physical activity, sedentary behavior, nutrition behavior, and physical fitness of primary school children, and 2) the process related to the implementation of the intervention. Methods: A quasi-experimental, controlled study with eight intervention schools and three control schools was conducted. The KEIGAAF intervention consists of a combined top-down and bottom-up school intervention: a steering committee developed the general KEIGAAF principles (top-down), and in accordance with these principles, KEIGAAF working groups subsequently develop and implement the intervention in their local context (bottom-up). Parents are also invited to participate in a family-based parenting program, i.e., Triple P Lifestyle. Children aged 7 to 10 years old (grades 4 to 6 in the Netherlands) are included in the study. Effect evaluation data is collected at baseline, after one year, and after two years by using a child questionnaire, accelerometers, anthropometry, a physical fitness test, and a parent questionnaire. A mixed methods approach is applied for the process evaluation: quantitative (checklists, questionnaires) and qualitative methods (observations, interviews) are used. To analyze intervention effectiveness, multilevel regression analyses will be conducted. Content analyses will be conducted on the qualitative process data. Discussion: Two important environmental settings, the school environment and the family environment, are simultaneously targeted in the KEIGAAF intervention. The combined top-down and bottom-up approach is expected to make the intervention an effective and sustainable version of the Health Promoting Schools framework. An elaborate process evaluation will be conducted alongside an effect evaluation in which multiple data collection sources (both qualitative and quantitative) are used.
Background/Aims: Analogy learning, a motor learning strategy that uses biomechanical metaphors to chunk together explicit rules of a to-be-learned motor skill. This proof-of-concept study aims to establish the feasibility and potential benefits of analogy learning in enhancing stride length regulation in people with Parkinson’s. Methods: Walking performance of thirteen individuals with Parkinson’s was analysed using a Codamotion analysis system. An analogy instruction; “following footprints in the sand” was practiced over 8 walking trials. Single- and dual- (motor and cognitive) task conditions were measured before training, immediately after training and 4-weeks post training. Finally, an evaluation form was completed to examine the interventions feasibility. Findings: Data from 12 individuals (6 females and 6 males, mean age 70, Hoehn and Yahr I-III) were analysed, one person withdrew due to back problems. In the single task condition, statistically and clinically relevant improvements were obtained. A positive trend towards reducing dual task costs after the intervention was demonstrated, supporting the relatively implicit nature of the analogy. Participants reported that the analogy was simple to use and became easier over time. Conclusions: Analogy learning is a feasible and potentially implicit (i.e. reduced working memory demands) intervention to facilitate walking performance in people with Parkinson’s.
Just-in-time adaptive intervention (JITAI) has gained attention recently and previous studies have indicated that it is an effective strategy in the field of mobile healthcare intervention. Identifying the right moment for the intervention is a crucial component. In this paper the reinforcement learning (RL) technique has been used in a smartphone exercise application to promote physical activity. This RL model determines the ‘right’ time to deliver a restricted number of notifications adaptively, with respect to users’ temporary context information (i.e., time and calendar). A four-week trial study was conducted to examine the feasibility of our model with real target users. JITAI reminders were sent by the RL model in the fourth week of the intervention, while the participants could only access the app’s other functionalities during the first 3 weeks. Eleven target users registered for this study, and the data from 7 participants using the application for 4 weeks and receiving the intervening reminders were analyzed. Not only were the reaction behaviors of users after receiving the reminders analyzed from the application data, but the user experience with the reminders was also explored in a questionnaire and exit interviews. The results show that 83.3% reminders sent at adaptive moments were able to elicit user reaction within 50 min, and 66.7% of physical activities in the intervention week were performed within 5 h of the delivery of a reminder. Our findings indicated the usability of the RL model, while the timing of the moments to deliver reminders can be further improved based on lessons learned.
The HAS professorship Future Food Systems is performing applied research with students and external partners to transform our food system towards a more sustainable state. In this research it is not only a question of what is needed to achieve this, but also how and with whom. The governance of our food system needs rethinking to get the transformative momentum going in a democratic and constructive manner. Building on the professorship’s research agenda and involvement in the transdisciplinary NWA research project, the postdoc will explore collective ownership and inclusive participation as two key governance concepts for food system transformation. This will be done in a participatory manner, by learning from and with innovative bottom-up initiatives and practitioners from the field. By doing so, the postdoc will gain valuable practical insights that can aid to new approaches and (policy) interventions which foster a sustainable and just food system in the Netherlands and beyond. A strong connection between research and education is created via the active research involvement of students from different study programs, supervised by the postdoc (Dr. B. van Helvoirt). The acquired knowledge is embedded in education by the postdoc by incorporating it into HAS study program curricula and courses. In addition, it will contribute to the further professional development of qualitative research skills among HAS students and staff. Through scientific, policy and popular publications, participation in (inter)national conferences and meetings with experts and practitioners, the exposure and network of the postdoc and HAS in the field of food systems and governance will be expanded. This will allow for the setting up of a continuous research effort on this topic within the professorship via follow-up research with knowledge institutes, civic society groups and partners from the professional field.
Huntington’s disease (HD) and various spinocerebellar ataxias (SCA) are autosomal dominantly inherited neurodegenerative disorders caused by a CAG repeat expansion in the disease-related gene1. The impact of HD and SCA on families and individuals is enormous and far reaching, as patients typically display first symptoms during midlife. HD is characterized by unwanted choreatic movements, behavioral and psychiatric disturbances and dementia. SCAs are mainly characterized by ataxia but also other symptoms including cognitive deficits, similarly affecting quality of life and leading to disability. These problems worsen as the disease progresses and affected individuals are no longer able to work, drive, or care for themselves. It places an enormous burden on their family and caregivers, and patients will require intensive nursing home care when disease progresses, and lifespan is reduced. Although the clinical and pathological phenotypes are distinct for each CAG repeat expansion disorder, it is thought that similar molecular mechanisms underlie the effect of expanded CAG repeats in different genes. The predicted Age of Onset (AO) for both HD, SCA1 and SCA3 (and 5 other CAG-repeat diseases) is based on the polyQ expansion, but the CAG/polyQ determines the AO only for 50% (see figure below). A large variety on AO is observed, especially for the most common range between 40 and 50 repeats11,12. Large differences in onset, especially in the range 40-50 CAGs not only imply that current individual predictions for AO are imprecise (affecting important life decisions that patients need to make and also hampering assessment of potential onset-delaying intervention) but also do offer optimism that (patient-related) factors exist that can delay the onset of disease.To address both items, we need to generate a better model, based on patient-derived cells that generates parameters that not only mirror the CAG-repeat length dependency of these diseases, but that also better predicts inter-patient variations in disease susceptibility and effectiveness of interventions. Hereto, we will use a staggered project design as explained in 5.1, in which we first will determine which cellular and molecular determinants (referred to as landscapes) in isogenic iPSC models are associated with increased CAG repeat lengths using deep-learning algorithms (DLA) (WP1). Hereto, we will use a well characterized control cell line in which we modify the CAG repeat length in the endogenous ataxin-1, Ataxin-3 and Huntingtin gene from wildtype Q repeats to intermediate to adult onset and juvenile polyQ repeats. We will next expand the model with cells from the 3 (SCA1, SCA3, and HD) existing and new cohorts of early-onset, adult-onset and late-onset/intermediate repeat patients for which, besides accurate AO information, also clinical parameters (MRI scans, liquor markers etc) will be (made) available. This will be used for validation and to fine-tune the molecular landscapes (again using DLA) towards the best prediction of individual patient related clinical markers and AO (WP3). The same models and (most relevant) landscapes will also be used for evaluations of novel mutant protein lowering strategies as will emerge from WP4.This overall development process of landscape prediction is an iterative process that involves (a) data processing (WP5) (b) unsupervised data exploration and dimensionality reduction to find patterns in data and create “labels” for similarity and (c) development of data supervised Deep Learning (DL) models for landscape prediction based on the labels from previous step. Each iteration starts with data that is generated and deployed according to FAIR principles, and the developed deep learning system will be instrumental to connect these WPs. Insights in algorithm sensitivity from the predictive models will form the basis for discussion with field experts on the distinction and phenotypic consequences. While full development of accurate diagnostics might go beyond the timespan of the 5 year project, ideally our final landscapes can be used for new genetic counselling: when somebody is positive for the gene, can we use his/her cells, feed it into the generated cell-based model and better predict the AO and severity? While this will answer questions from clinicians and patient communities, it will also generate new ones, which is why we will study the ethical implications of such improved diagnostics in advance (WP6).
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.