Jos Pieterse studeerde sociotechniek aan de Radboud Universiteit in Nijmegen en behaalde zijn doctoraat in change management aan de Open Universiteit in Heerlen bij Thijs Homan. Zijn promotieonderzoek richtte zich vooral op verschillen in het taalgebruik van professionals die samenwerken aan verandervraagstukken in en tussen organisaties. Bij circulaire- en duurzaamheidsvraagstukken in veelal multi-stakeholder netwerken is dit “elkaar begrijpen” cruciaal. De betekenisgeving die bij deze actoren al pratende in hun interacties ontstaat is niet te voorspellen, laat staan te managen. Dit sociale complexiteitsperspectief is door Thijs Homan verder uitgewerkt en vormt één van de pijlers in de onderzoeken van Jos.
LINK
Routine immunization (RI) of children is the most effective and timely public health intervention for decreasing child mortality rates around the globe. Pakistan being a low-and-middle-income-country (LMIC) has one of the highest child mortality rates in the world occurring mainly due to vaccine-preventable diseases (VPDs). For improving RI coverage, a critical need is to establish potential RI defaulters at an early stage, so that appropriate interventions can be targeted towards such population who are identified to be at risk of missing on their scheduled vaccine uptakes. In this paper, a machine learning (ML) based predictive model has been proposed to predict defaulting and non-defaulting children on upcoming immunization visits and examine the effect of its underlying contributing factors. The predictive model uses data obtained from Paigham-e-Sehat study having immunization records of 3,113 children. The design of predictive model is based on obtaining optimal results across accuracy, specificity, and sensitivity, to ensure model outcomes remain practically relevant to the problem addressed. Further optimization of predictive model is obtained through selection of significant features and removing data bias. Nine machine learning algorithms were applied for prediction of defaulting children for the next immunization visit. The results showed that the random forest model achieves the optimal accuracy of 81.9% with 83.6% sensitivity and 80.3% specificity. The main determinants of vaccination coverage were found to be vaccine coverage at birth, parental education, and socio-economic conditions of the defaulting group. This information can assist relevant policy makers to take proactive and effective measures for developing evidence based targeted and timely interventions for defaulting children.
MULTIFILE
Innovative development is a program that is given at The Hague University of Applied Sciences. This program teaches students to become more innovative. This article will look into the current approach and measure the growth in innovativeness of the students over the years. This was measured with a survey, based on the Berkeley innovation index. The results from the survey were calculated and scored based on eight factors. The innovative development program was compared with another program called information security management. These programs are from the same faculty. The information security management program did not show significant growth over the years in innovation. The innovative development program had resulted in a significant growth in innovativeness over the years. Some of the factors could be improved to increase the effectiveness of the innovative development program. https://nl.linkedin.com/in/haniers
MULTIFILE
Middels een RAAK-impuls aanvraag wordt beoogd de vertraging van het RAAK-mkb project Praktische Predictie t.g.v. corona in te halen. In het project Praktische Predictie wordt een prototype app ontwikkeld waarmee fysiotherapeuten in een vroeg stadium het chronisch worden van lage rugpijn kunnen voorspellen. Om chronische rugpijn te voorkomen is het belangrijk om in een vroeg stadium de kans hierop in te schatten door psychosociale en mogelijk andere risicofactoren op chronische pijnklachten te herkennen en hierop te interveniëren. Fysiotherapeuten zijn met deze vraag naar het lectoraat Werkzame factoren in Fysiotherapie en Paramedisch Handelen van de Hogeschool van Arnhem en Nijmegen gegaan en dit heeft aanleiding gegeven een onderzoek op te zetten waarin een dergelijke methodiek ontwikkeld wordt. De voorgestelde methodiek betreft een Clinical Decision Support Tool waarmee een geïndividualiseerde kans op chronische rugpijn kan worden bepaald gekoppeld aan een behandeladvies conform de lage rugpijn richtlijn. Hiervoor is eerst geïnventariseerd welke methoden fysiotherapeuten reeds gebruiken en welke in de literatuur worden genoemd. Op basis hiervan is een keuze gemaakt ten aanzien van data die digitaal verzameld worden in minimaal 16 fysiotherapiepraktijken waarbij patiënten gedurende 12 weken gevolgd worden. Met de verzamelde data worden met machine learning algoritmes ontwikkeld voor het berekenen van de kans op chroniciteit. De algoritmes worden ingebouwd in de Clinical Decision Support Tool: een gebruiksvriendelijke prototype app. Bij het ontwikkelen van de tool worden eindgebruikers (fysiotherapeuten en patiënten) intensief betrokken. Op deze manier wordt gegarandeerd dat de tool aansluit bij de wensen en behoeften van de doelgroep. De tool berekent de kans op chroniciteit en geeft een behandeladvies. Daarnaast kan de tool gebruikt worden om patiënten te informeren en te betrekken bij de besluitvorming. Vanwege de coronacrisis is er een aanzienlijke vertraging in de patiënten-instroom (doel n= 300) ontstaan die we met ondersteuning van een RAAK-impuls subsidie willen inlopen.
Mediabedrijven en -organisaties maken steeds meer gebruik van algoritmes om hun gebruikers gepersonaliseerde aanbevelingen aan te bieden voor artikelen, muziek, series, films en video’s. Dergelijke aanbevelingsalgoritmes maken gebruik van technieken uit kunstmatige intelligentie om te voorspellen in welke inhoud een gebruiker geïnteresseerd is, bijvoorbeeld op basis van wat de gebruiker eerder heeft bekeken of beluisterd of op basis van wat andere gebruikers hebben bekeken of beluisterd. Publieke omroepen, die programma’s maken voor kijkers en luisteraars, en de Nederlandse Publieke Omroep (NPO), die in Nederland zorgt voor de distributie en uitzending van die programma’s, zien potentie in deze technologie. De NPO maakt nog slechts beperkt gebruik van automatische aanbevelingen om inhoud aan kijkers en luisteraars aan te bieden, maar zij verkent samen met een aantal partners uit het publieke omroepbestel de mogelijkheden om de technologie breder in te zetten. Anders dan de meeste mediabedrijven wordt de NPO wordt bekostigd door overheidsbudget en heeft het als expliciete missie om het Nederlandse publiek te verbinden en te verrijken met programma’s die informeren, inspireren en amuseren. Dit stelt andere eisen aan een aanbevelingsalgoritme. Waar het doel van commerciële partijen veelal bestaat uit het optimaliseren van winst en/of engagement, beoogt de NPO aanbevelingen te bieden op transparante en inzichtelijke wijze, en staat pluriformiteit (diversiteit in perspectieven) in aanbevelingen centraal. Op dit moment speelt bij de NPO de vraag welke principes (pluriformiteit, personalisatie, etc.) leidend moeten zijn in aanbevelingen en hoe deze principes geoperationaliseerd kunnen worden. Het doel van dit project is daarom om, middels literatuuronderzoek, interviews met experts en gebruikers, en prototyping, een aantal principes te identificeren en operationaliseren die geschikt zijn voor aanbevelingsalgoritmes van publieke omroepen.
In het RAAK-project, genaamd Groningen MAPS, is er veel data en kennis vergaard van waaruit antwoorden zijn geformuleerd op verschillende vragen rondom belasting en belastbaarheid van (top)sporters. Het onderzoek naar de factoren die invloed hebben op de prestaties en het blessurerisico van sporters heeft opgeleverd dat we nu meer inzicht hebben in de informatie die nodig is om gericht te zoeken naar verbanden tussen belasting en belastbaarheid. We hebben echter nog niet gekeken naar de data vanuit een datamining perspectief. Datamining is het gericht zoeken naar verbanden in een database met als doel het opstellen van profielen. Deze profielen kunnen nieuwe inzichten geven waardoor sporters van nog betere feedback voorzien kunnen worden. Het doel van het Top-up project is om kennis te ontwikkelen over het automatiseren van de verwerking en analyse van datastromen. Dit zal leiden tot een datasysteem wat automatisch analyses uitvoert achter de schermen. Met dit datasysteem kan de Groningen MAPS-data verder geanalyseerd worden (door middel van datamining) om nieuw inzicht te verkrijgen op het gebied van patronen in belasting en belastbaarheid van (top)sporters.