LINK
In het kader van het Midlife Resourcing (MLR)-project werd in de zorgsector onderzoek gedaan bij de Vivium zorggroep. De leidraad van het onderzoek is geweest:“Welke mogelijkheden zien de werknemers bij Vivium om gezond en met plezier te werken tot aan de pensioengerechtigde leeftijd?” Na een korte introductie wordt ingegaan op het gevoel van urgentie voor MLR zoals dat werd waargenomen binnen de organisatie. Hierna zullen de werving van de deelnemers en een verantwoording van de werkwijze worden behandeld. Na een beschrijving van het project,de resultaten en de valkuilen zullen de leerpunten worden besproken.
Het aantrekken van zijinstromers in het onderwijs wordt gezien als één van de belangrijkste maatregelen voor het terugdringen van het landelijke lerarentekort. Zijinstromers zijn hoogopgeleide professionals die een nieuwe carrière beginnen in het onderwijs. Na een geschiktheidsonderzoek staan zijinstromers direct betaald voor de klas en volgen zij daarnaast een opleidingstraject bij een lerarenopleiding. De belangstelling voor het traject groeit, maar de uitval is vaak hoog. Soms blijkt de helft van de zijinstromers het traject niet af te maken of het onderwijs vroegtijdig te verlaten. In dit onderzoek hebben we gekeken naar twee trajecten waar de uitval juist lager dan het landelijke gemiddelde is. We hebben onderzocht wat typisch is aan deze trajecten en wat succesfactoren en verbeterpunten zijn. We zoomden daarom middels een kleinschalig kwalitatief onderzoek in op hoe de werving en selectie enerzijds en maatwerk en begeleiding anderzijds eruit ziet en hoe zijinstromers dit ervaren.
Mensen die moeite hebben met lezen en schrijven (laaggeletterden) zijn ondervertegenwoordigd in onderzoek, waardoor een belangrijke onderzoekspopulatie ontbreekt. Dit is een probleem, omdat zorgbeleid dan onvoldoende op hun behoeften wordt aangepast. Laaggeletterden hebben vaak een lage sociaal economische positie (SEP). Mensen met een lage SEP leven gemiddeld 4 jaar korter en 15 jaar in minder goed ervaren gezondheid vergeleken met mensen met een hoge SEP. Om laaggeletterden te betrekken in onderzoek, is het o.a. nodig om onderzoek toegankelijker te maken. Dit project draagt hieraan bij door de ontwikkeling van een toolbox voor toegankelijke (proefpersonen)informatie (pif) en toestemmingsverklaringen. We ontwikkelen in co-creatie met de doelgroep toegankelijke audiovisuele materialen die breed ingezet kunnen worden door (gezondheids)onderzoekers van (zorggerelateerde) instanties/bedrijven én kennisinstellingen voor de werving voor en informatieverstrekking over onderzoek. In de multidisciplinaire samenwerking met onze partners YURR.studio, Pharos, Stichting ABC, Stichting Crowdience, de HAN-Sterkplaats en de Academische Werkplaats Sterker op eigen benen (AW-SOEB) van Radboudumc stellen we de behoeften van de doelgroep centraal. Middels creatieve sessies en gebruikerservaringen wordt in een iteratief ontwerpende onderzoeksaanpak toegewerkt naar diverse ontwerpen van informatiebrieven en toestemmingsverklaringen, waarbij de visuele communicatie dragend is. Het ontwikkelproces biedt kennisontwikkeling en hands-on praktijkvoorbeelden voor designers en grafisch vormgevers in het toegankelijk maken van informatie. Als laaggeletterden beter bereikt worden d.m.v. de pif-toolbox, kunnen de inzichten van deze groep worden meegenomen. Dit zorgt voor een minder scheef beeld in onderzoek, waardoor (gezondheids)beleid zich beter kan richten op kwetsbare doelgroepen. Hiermee wordt een bijdrage geleverd aan het verkleinen van gezondheidsverschillen.
Communicatieprofessionals slagen er niet in adequaat om te gaan met beroering in de publieke sfeer, in het bijzonder als deze zich op sociale media afspeelt. Dat onvermogen betaalt zich vaak duur uit want leidt tot grote maatschappelijke problemen (‘issues’), vertrouwensverlies, hoge kosten, grillig beleid en andere onverkwikkelijkheden. Vandaar de behoefte onder professionals dergelijke beroering voor te zijn. Belangrijkste doel van dit project is de ontwikkeling van een leeromgeving die hen daartoe in staat stelt. Het vermogen de beroering op sociale media, voor zover mogelijk, te begrijpen en te beheersen, begint bij inzicht in hoe die beroering tot stand komt, zich ontwikkelt en het beste benaderd kan worden. Cruciaal hierbij is het besef dat men er vroeg bij moet zijn, nog voordat de onrust op sociale media zich tot een issue ontwikkelt. Daarna is het veelal te laat. Vandaar het enorme belang oog te hebben voor de subtiliteit en complexiteit van taal. Immers heel vaak staat er niet wat er staat of zegt men niet wat men bedoelt. Maar het herkennen van de juiste bedoeling is een buitengewoon lastig proces dat via traditionele vormen van monitoring veelal onvoldoende tot stand komt. Voor een adequate omgang met potentiële issues zou dat echter wel moeten. De mogelijkheden daartoe maken de kern uit van de in dit project voorgestelde vorm van discoursanalyse en daarop gebaseerde leeromgeving. Voor zowel die discoursanalyse als de leeromgeving wordt gebruik gemaakt van AI technieken. Die technieken maken de leeromgeving ‘smart’, dat wil zeggen vol mogelijkheden tot interactie, automatische feedback, visualisaties en geavanceerde vormen van kennisverwerving. AI technieken worden in dit project ook ingezet bij het doen van discoursanalyse. Deels gebeurt dat door de communicatieprofessional zelf, tijdens het leerproces. Al doende leert hij niet alleen over het publiek debat maar draagt ook bij aan kennis en analyse daarvan.
De maatschappelijke discussies over de invloed van AI op ons leven tieren welig. De terugkerende vraag is of AI-toepassingen – en dan vooral recommendersystemen – een dreiging of een redding zijn. De impact van het kiezen van een film voor vanavond, met behulp van Netflix' recommendersysteem, is nog beperkt. De impact van datingsites, navigatiesystemen en sociale media – allemaal systemen die met algoritmes informatie filteren of keuzes aanraden – is al groter. De impact van recommendersystemen in bijvoorbeeld de zorg, bij werving en selectie, fraudedetectie, en beoordelingen van hypotheekaanvragen is enorm, zowel op individueel als op maatschappelijk niveau. Het is daarom urgent dat juist recommendersystemen volgens de waarden van Responsible AI ontworpen worden: veilig, eerlijk, betrouwbaar, inclusief, transparant en controleerbaar. Om op een goede manier Responsible AI te ontwerpen moeten technische, contextuele én interactievraagstukken worden opgelost. Op het technische en maatschappelijke niveau is al veel vooruitgang geboekt, respectievelijk door onderzoek naar algoritmen die waarden als inclusiviteit in hun berekening meenemen, en door de ontwikkeling van wettelijke kaders. Over implementatie op interactieniveau bestaat daarentegen nog weinig concrete kennis. Bekend is dat gebruikers die interactiemogelijkheden hebben om een algoritme bij te sturen of aan te vullen, meer transparantie en betrouwbaarheid ervaren. Echter, slecht ontworpen interactiemogelijkheden, of een mismatch tussen interactie en context kosten juist tijd, veroorzaken mentale overbelasting, frustratie, en een gevoel van incompetentie. Ze verhullen eerder dan dat ze tot transparantie leiden. Het ontbreekt ontwerpers van interfaces (UX/UI designers) aan systematische concrete kennis over deze interactiemogelijkheden, hun toepasbaarheid, en de ethische grenzen. Dat beperkt hun mogelijkheid om op interactieniveau aan Responsible AI bij te dragen. Ze willen daarom graag een pattern library van interactiemogelijkheden, geannoteerd met onderzoek over de werking en inzetbaarheid. Dit bestaat nu niet en met dit project willen we een substantiële bijdrage leveren aan de ontwikkeling ervan.