Due to changes in technology and customer behaviour, entrepreneurial firms have to constantly innovate. Here, service innovation has appeared as a successful way to overcome the dead-end road of competition (Bouwman & Fielt, 2008). Thus, entrepreneurial firms are increasingly asked to develop competences to engage in digitally-enabled innovation processes for services as reflected in recent competence frameworks (European Commission, 2019). Consequently, universities need to update entrepreneurship education to these new demands through a multi-perspective research approach to co-research and co-design future entrepreneurship education.First, we aim at developing an up-to-date digital innovation process to enhance the limited scientific knowledge on the use of digital tools for innovation processes (Akaka & Vargo, 2014; Helmer et al., 2021). Second, we aim at developing digital platforms to enhance the engagement of industry in education and vice versa. Third, we aim at gaining insights to develop modern entrepreneurship course curricula in this context.
The premise for this paper is that tourism scholars researching in Israel and Palestine are, in effect, actors in the geopolitical landscape of the Holy Land. Political tourism is a significant factor in how the Israel–Palestine geopolitical conflict is represented. The current paper provides an analysis of how tourism academics address the situation. A research team of Israeli, Palestinian and a third country origins collaborated to produce a narrative synthesis by systematically reviewing 35 academic papers selected through defined criteria. This approach minimized bias and aimed for analytical robustness and validity. Two main conclusions are derived from the analysis. First, papers tend to focus on the social, touristic and religious aspects of tourism not on the core issues of the geopolitical conflict. Second, the works did not contribute to dialogue between parties but reinforced separateness thus reflecting the political conflict.
The paper presents a framework that through structured analysis of accident reports explores the differences between practice and academic literature as well amongst organizations regarding their views on human error. The framework is based on the hypothesis that the wording of accident reports reflects the safety thinking and models that have been applied during the investigation, and includes 10 aspects identified in the state-of-the-art literature. The framework was applied to 52 air accident reports published by the Dutch Safety Board (DSB) and 45 ones issued by the Australian Transport Safety Bureau (ATSB) from 1999 to 2014. Frequency analysis and statistical tests showed that the presence of the aspects in the accident reports varied from 32.6% to 81.7%, and revealed differences between the ATSB and the DSB approaches to human error. However, in overall safety thinking have not changed over time, thus, suggesting that academic propositions might have not yet affected practice dramatically.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
The Academy for Leisure & Events has always been one of the frontrunners when it comes to the development, design and implementation of cultural tourism and creative industry business models as well as lifelong learning programmes.These programmes are attended by a variety of leisure and tourism professionals, including public authorities in leisure, culture and nature fields.The CULTURWB project addresses the need for strengthening the development of the cultural tourism industry.The experts from BUas together with the other project partners have utilised diverse research methodologies (marketing and branding, strategy business planning, digital tourism, sustainable development, strategy and action plan implementation, etc.) to develop and pilot a toolkit for Lifelong Learning courses in the field of cultural tourism and heritage. They have also designed and implemented a master’s programme in the WB countries and created an online platform for communication between stakeholders, industry leaders, managers, workforce, and academia.PartnersHochschule Heibronn, FH Joanneum Gesellschaft, World University Service - Österreichisches Komitee (WUS Austria), Dzemal Bijedic University of Mostar (UNMO), University of East Sarajevo (UES), The University of Banja Luka (UBL), University of NIS (UNI), University of Montenegro (UoM), Sarajevo Meeting of Cultures (SMOC), rovincial Institute for the Protection of Cultural Monuments (PZZZSK), Tourism Organisation of Kotor Municipality (TO Kotor)
Today, embedded devices such as banking/transportation cards, car keys, and mobile phones use cryptographic techniques to protect personal information and communication. Such devices are increasingly becoming the targets of attacks trying to capture the underlying secret information, e.g., cryptographic keys. Attacks not targeting the cryptographic algorithm but its implementation are especially devastating and the best-known examples are so-called side-channel and fault injection attacks. Such attacks, often jointly coined as physical (implementation) attacks, are difficult to preclude and if the key (or other data) is recovered the device is useless. To mitigate such attacks, security evaluators use the same techniques as attackers and look for possible weaknesses in order to “fix” them before deployment. Unfortunately, the attackers’ resourcefulness on the one hand and usually a short amount of time the security evaluators have (and human errors factor) on the other hand, makes this not a fair race. Consequently, researchers are looking into possible ways of making security evaluations more reliable and faster. To that end, machine learning techniques showed to be a viable candidate although the challenge is far from solved. Our project aims at the development of automatic frameworks able to assess various potential side-channel and fault injection threats coming from diverse sources. Such systems will enable security evaluators, and above all companies producing chips for security applications, an option to find the potential weaknesses early and to assess the trade-off between making the product more secure versus making the product more implementation-friendly. To this end, we plan to use machine learning techniques coupled with novel techniques not explored before for side-channel and fault analysis. In addition, we will design new techniques specially tailored to improve the performance of this evaluation process. Our research fills the gap between what is known in academia on physical attacks and what is needed in the industry to prevent such attacks. In the end, once our frameworks become operational, they could be also a useful tool for mitigating other types of threats like ransomware or rootkits.