The scope of technology has expanded towards areas such as sports and vitality, offering significant challenges for engineering designers. However, only little is known about the underlying design and engineering processes used within these fields. Therefore, this paper aims to get an indepth understanding of these type of processes. During a three-day design competition (Hackathon), three groups of engineers were challenged to develop experience-able prototypes in the field of sports and vitality. Their process was monitored based on the Reflective Transformative Design process (RTD-process) framework, describing the various activities part of the design process. Groups had to keep track of their activities, and six group reflection-sessions were held. Results show that all groups used an open and explorative approach, they frequently swapped between activities, making them able to reflect on their actions. While spending more time on envisioning and creating a clear vision seem to relate to the quality of the design concept.
DOCUMENT
In the current discourses on sustainable development, one can discern two main intellectual cultures: an analytic one focusing on measuring problems and prioritizing measures, (Life Cycle Analysis (LCA), Mass Flow Analysis (MFA), etc.) and; a policy/management one, focusing on long term change, change incentives, and stakeholder management (Transitions/niches, Environmental economy, Cleaner production). These cultures do not often interact and interactions are often negative. However, both cultures are required to work towards sustainability solutions: problems should be thoroughly identified and quantified, options for large change should be guideposts for action, and incentives should be created, stakeholders should be enabled to participate and their values and interests should be included in the change process. The paper deals especially with engineering education. Successful technological change processes should be supported by engineers who have acquired strategic competences. An important barrier towards training academics with these competences is the strong disciplinarism of higher education. Raising engineering students in strong disciplinary paradigms is probably responsible for their diminishing public engagement over the course of their studies. Strategic competences are crucial to keep students engaged and train them to implement long term sustainable solutions.
DOCUMENT
Both Software Engineering and Machine Learning have become recognized disciplines. In this article I analyse the combination of the two: engineering of machine learning applications. I believe the systematic way of working for machine learning applications is at certain points different from traditional (rule-based) software engineering. The question I set out to investigate is “How does software engineering change when we develop machine learning applications”?. This question is not an easy to answer and turns out to be a rather new, with few publications. This article collects what I have found until now.
LINK
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.
To treat microbial infections, antibiotics are life-saving but the increasing antimicrobial resistance is a World-wide problem. Therefore, there is a great need for novel antimicrobial substances. Fruit and flower anthocyanins have been recognized as promising alternatives to traditional antibiotics. How-ever, for future application as innovative alternative antibiotics, the full potential of anthocyanins should be further investigated. The antimicrobial potential of anthocyanin mixtures against different bacterial species has been demonstrated in literature. Preliminary experiments performed by our laboratories, using grape, rose and red cabbage anthocyanins against S. aureus and E. coli confirmed the antimicrobial potential of these substances. Hundreds of different anthocyanin entities have been described. However, which of these entities hold antimicrobial effects is currently unknown. Our preliminary data show that an-thocyanins extracted from grape, rose and red cabbage contain different collections of anthocyanin entities with differential antimicrobial efficacies. Our focus is on the extraction and characterization of anthocyanins from various crop residues. Grape peels are residues in the production of wine, while red rose and tulip leaves are residues in the production of tulip bulbs and regular horticulture. The presence of high-grade substances for pharmacological purposes in these crops may provide an innovative strategy to add value to other-wise invaluable crop residues. This project will be performed by the collaborative effort of our institute together with the Medi-cal Microbiology department of the University Medical Center Groningen (UMCG), 'Wijnstaete', a small-scale wine-producer (Lemelerveld) and Imenz Bioengineering (Groningen), a company that develops processes to improve the production of biobased chemicals from waste products. Within this project, we will focus on the antimicrobial efficacy of anthocyanin-mixtures from sources that are abundantly and locally available as a residual waste product. The project is part of a larger re-search effect to further characterize, modify and study the antimicrobial effects of specific anthocy-anin entities.
Lectorate, part of NHL Stenden Hogeschool