Ageing in place is een veelvuldig genoemd concept. Echter, het is de vraag wat dit volgens de wetenschappelijke literatuur inhoudt. In dit artikel wordt het concept ageing in place in kaart gebracht aan de hand van de vijf hoofdthema’s zoals die uit de literatuur zijn gedestilleerd. Een meer eenduidig begrip van ageing in place zal professionals, beleidsmakers, onderzoekers en sociale netwerken kunnen helpen de veelzijdigheid van het concept te zien en toe te passen.
DOCUMENT
Background: Most older adults prefer to age in place, and supporting older adults to remain in their own homes and communities is also favored by policy makers. Technology can play a role in staying independent, active and healthy. However, the use of technology varies considerably among older adults. Previous research indicates that current models of technology acceptance are missing essential predictors specific to community-dwelling older adults. Furthermore, in situ research within the specific context of aging in place is scarce, while this type of research is needed to better understand how and why community-dwelling older adults are using technology. Objective: To explore which factors influence the level of use of various types of technology by older adults who are aging in place and to describe these factors in a comprehensive model. Methods: A qualitative explorative field study was set up, involving home visits to 53 community-dwelling older adults, aged 68-95, living in the Netherlands. Purposive sampling was used to include participants with different health statuses, living arrangements, and levels of technology experience. During each home visit: (1) background information on the participants' chronic conditions, major life events, frailty, cognitive functioning, subjective health, ownership and use of technology was gathered, and (2) a semistructured interview was conducted regarding reasons for the level of use of technology. The study was designed to include various types of technology that could support activities of daily living, personal health or safety, mobility, communication, physical activity, personal development, and leisure activities. Thematic analysis was employed to analyze interview transcripts. Results: The level of technology use in the context of aging in place is influenced by six major themes: challenges in the domain of independent living; behavioral options; personal thoughts on technology use; influence of the social network; influence of organizations, and the role of the physical environment. Conclusion: Older adults' perceptions and use of technology are embedded in their personal, social, and physical context. Awareness of these psychological and contextual factors is needed in order to facilitate aging in place through the use of technology. A conceptual model covering these factors is presented.
LINK
Ageing in place is een veelvuldig genoemd concept. Echter, het is de vraag wat dit volgens de wetenschappelijke literatuur inhoudt. In dit artikel wordt het concept ageing in place in kaart gebracht aan de hand van de vijf hoofdthema’s zoals die uit de literatuur zijn gedestilleerd. Een meer eenduidig begrip van ageing in place zal professionals, beleidsmakers, onderzoekers en sociale netwerken kunnen helpen de veelzijdigheid van het concept te zien en toe te passen.
DOCUMENT
The seaweed aquaculture sector, aimed at cultivation of macroalgal biomass to be converted into commercial applications, can be placed within a sustainable and circular economy framework. This bio-based sector has the potential to aid the European Union meet multiple EU Bioeconomy Strategy, EU Green Deal and Blue Growth Strategy objectives. Seaweeds play a crucial ecological role within the marine environment and provide several ecosystem services, from the take up of excess nutrients from surrounding seawater to oxygen production and potentially carbon sequestration. Sea lettuce, Ulva spp., is a green seaweed, growing wild in the Atlantic Ocean and North Sea. Sea lettuce has a high nutritional value and is a promising source for food, animal feed, cosmetics and more. Sea lettuce, when produced in controlled conditions like aquaculture, can supplement our diet with healthy and safe proteins, fibres and vitamins. However, at this moment, Sea lettuce is hardly exploited as resource because of its unfamiliarity but also lack of knowledge about its growth cycle, its interaction with microbiota and eventually, possible applications. Even, it is unknown which Ulva species are available for aquaculture (algaculture) and how these species can contribute to a sustainable aquaculture biomass production. The AQULVA project aims to investigate which Ulva species are available in the North Sea and Wadden Sea which can be utilised in onshore aquaculture production. Modern genomic, microbiomic and metabolomic profiling techniques alongside ecophysiological production research must reveal suitable Ulva selections with high nutritional value for sustainable onshore biomass production. Selected Ulva spp lines will be used for production of healthy and safe foods, anti-aging cosmetics and added value animal feed supplements for dairy farming. This applied research is in cooperation with a network of SME’s, Research Institutes and Universities of Applied Science and is liaised with EU initiatives like the EU-COST action “SeaWheat”.
De markt vraagt om steeds meer productvariëteit. Veel bedrijven realiseren productvariëteit nu met veel klant-specifiek engineeringswerk (Engineer-to-Order/EtO). Dit zet druk op alle afdelingen in het bedrijf zoals sales, engineering, productie en service. Een uitdagende manier voor deze bedrijven, om beter met het spanningsveld tussen externe en interne eisen om te gaan, is het ontwikkelen van meer configureerbare producten (lego principe}. Hiervoor is een modulaire opbouw van het product nodig waarin verschillende productonderdelen gestandaardiseerd zijn en gebruikt kunnen worden in verschillende eindproducten. Zo kan, met minder engineeringsactiviteiten, een product geconfigureerd worden (Configure-to-Order/CtO) en de klant productvariëteit worden geboden zonder alle interne druk. Voor diverse bedrijven vormen ook de mogelijkheden van Industry 4.0 en sustainabilty ambities belangrijke drivers in hun streven naar meer CtO. Het implementeren van CtO is echter niet eenvoudig. Het vraagt om aanzienlijke capaciteit, kennis en kunde op het gebied van productontwikkeling, procesontwikkeling en het veranderproces. Betrokkenheid van medewerkers uit alle belangrijke afdelingen (verkoop, engineering, productie, service etc.) is een vereiste. Mkb-bedrijven worstelen hiermee en hebben behoefte aan goede tools en technieken, zowel inhoudelijk, over de ontwikkeling van de productarchitectuur en de impact hiervan op de bedrijfsprocessen, als veranderkundig, hoe deze transitie tot stand te brengen. In dit Sia RAAK-mkb onderzoek willen wij samen met productie mkb-bedrijven, kennisinstellingen en brancheorganisaties een integrale aanpak ontwikkelen om CtO op een goede manier te implementeren. De deelnemende mkb-bedrijven hebben de duidelijke wens om dit de komende jaren te doen. Voor de specifieke casussen zullen met casestudies en interventieonderzoek aanpakken ontwikkeld worden. Studentprojecten zullen ondersteuning geven aan de verschillende interventies. Vervolgens zal systematisch case-vergelijkend onderzoek worden uitgevoerd om inzicht te krijgen in wat in welke situatie werkt. Op basis van het case-vergelijkend onderzoek worden tools en technieken ontwikkeld die enerzijds generiek zijn en anderzijds kunnen worden aangepast aan specifieke bedrijfssituaties.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.