Background To gain insight into the role of plantar intrinsic foot muscles in fall-related gait parameters in older adults, it is fundamental to assess foot muscles separately. Ultrasonography is considered a promising instrument to quantify the strength capacity of individual muscles by assessing their morphology. The main goal of this study was to investigate the intra-assessor reliability and measurement error for ultrasound measures for the morphology of selected foot muscles and the plantar fascia in older adults using a tablet-based device. The secondary aim was to compare the measurement error between older and younger adults and between two different ultrasound machines. Methods Ultrasound images of selected foot muscles and the plantar fascia were collected in younger and older adults by a single operator, intensively trained in scanning the foot muscles, on two occasions, 1–8 days apart, using a tablet-based and a mainframe system. The intra-assessor reliability and standard error of measurement for the cross-sectional area and/or thickness were assessed by analysis of variance. The error variance was statistically compared across age groups and machines. Results Eighteen physically active older adults (mean age 73.8 (SD: 4.9) years) and ten younger adults (mean age 21.9 (SD: 1.8) years) participated in the study. In older adults, the standard error of measurement ranged from 2.8 to 11.9%. The ICC ranged from 0.57 to 0.97, but was excellent in most cases. The error variance for six morphology measures was statistically smaller in younger adults, but was small in older adults as well. When different error variances were observed across machines, overall, the tablet-based device showed superior repeatability. Conclusions This intra-assessor reliability study showed that a tablet-based ultrasound machine can be reliably used to assess the morphology of selected foot muscles in older adults, with the exception of plantar fascia thickness. Although the measurement errors were sometimes smaller in younger adults, they seem adequate in older adults to detect group mean hypertrophy as a response to training. A tablet-based ultrasound device seems to be a reliable alternative to a mainframe system. This advocates its use when foot muscle morphology in older adults is of interest.
MULTIFILE
Lectorale rede, in verkorte vorm uitgesproken bij de aanvaarding van de functie van lector Mens en Technologie aan Fontys Hogeschool HRM en Psychologie op 7 juni 2013. In deze rede wordt men meegenomen op een tochtje door de wereld van mens en technologie. Eerst worden een aantal relevante ontwikkelingen op het snijvlak van psychologie en technologie getoond. Vervolgens wordt men meegenomen in de praktijk door voor verschillende toepassingsdomeinen de mogelijkheden van technologie te laten zien en relevantie onderzoeksvragen te bespreken. Tenslotte wordt door de wereld van het HBO en het lectoraat gereisd, waarbij wordt getoond wat de missie is van het lectoraat en hoe er gestalte aan gegeven zal worden. Onderweg wordt geregeld uit het raampje gekeken om inspirerende voorbeelden te zien van projecten, producten en samenwerkingsverbanden.
In het werving- en selectieproces proberen organisaties in eerste instantie zoveel mogelijk geschikte kandidaten te laten solliciteren (een marketing/ branding probleem) om daaruit dan de meest geschikte kandidaat te kiezen (een selectieprobleem).Het is wettelijk verboden om bij het selecteren van kandidaten te discrimineren op kenmerken die niet relevant zijn voor de selectie (zoals huidskleur, geloof of leeftijd). Maar een eerlijk en rechtvaardig proces moet verder gaan dan de wet. Een ethische aanpak zorgt ervoor dat gelijk gesitueerde mensen gelijk behandeld worden, dat vooroordelen geen kans hebben, dat kandidaten met menswaardigheid en respect behandeld worden, dat de procedures en uitkomsten voor iedereen helder zijn, dat de kandidaat zinnige feedback krijg na het proces, en dat de voorspellingen over het toekomstige werksucces van een kandidaat daadwerkelijk kloppen.Voor elk van de fasen van werving- en selectie zijn er kunstmatige intelligentiesystemen op de markt die organisaties kunnen helpen bij het proces. Die technologieën hebben gevolgen voor wie er wel of niet worden geselecteerd en kunnen dus een impact hebben op de diversiteit van een organisatie.De diversiteit binnen een organisatie kan op drie manieren worden vergroot. Je kunt de bestaande bias uit het proces proberen te halen, je kunt barrières die ervoor zorgen dat alleen specifieke groepen kunnen of willen solliciteren wegnemen, en je kunt actief op zoek gaan naar kandidaten met een divers profiel.Technologie zou op drie manieren kunnen helpen bij het verminderen van bias binnen het proces. Irrelevante persoonskenmerken kunnen automatisch buiten beschouwing worden gelaten en je kunt een stuk makkelijker dan bij een menselijke recruiter meten op wat voor manier het systeem biased is. Ook zou technologie kunnen helpen bij het vindenvan nieuwe groepen kandidaten die eerder nog niet in beeld waren.De voordelen van het gebruik van kunstmatige intelligentie hebben daarnaast vooral te maken met efficiëntie. Delen van het proces kunnen worden geautomatiseerd, en de werkwijze kan meer uniform gemaakt. Het zijn daarom vooral organisaties die grote aantal kandidaten werven die op dit moment gebruik maken van kunstmatige intelligentie.Er kleven ook grote risico’s aan het gebruik van kunstmatige intelligentie binnen werving- en selectieprocessen. Omdat veel van de technologie uitgaat van de huidige (succesvolle) werknemers is er de kans dat je de (weinige diverse) status quo juist handhaaft. Het is nooit uit te sluiten dat er hele specifieke vormen van bias met betrekking tot bepaalde groepen in het systeem blijven zitten, en dit soort systemen kunnen sowieso slecht omgaan met individuen die op een of andere manier afwijken van de norm. Die bias die – ook na een zorgvuldige implementatie – overblijft is dan wel meteen systematisch en schaalt mee met de inzet van de technologie. Verder blijft het moeilijk om te valideren of de kunstmatige intelligentie die je inzet wel goed werkt. Tot slot hebben dit soort systemen veel data nodig. Dit kan op het gebied van privacy en de vereiste dataminimalisatie problemen opleveren.Je hoort vaak dat we ons geen zorgen hoeven te maken over de inzet van kunstmatige intelligentie binnen werving- en selectie. Het is immers voorlopig nog steeds de mens die de uiteindelijke beslissing neemt. Dit klopt (vooralsnog) misschien nog wel voor het aannemen van de kandidaat, maar is allang niet meer het geval voor de kandidaten die worden afgewezen. Daar is het vaak al de machine die kiest, zonder enige menselijke tussenkomst.Als je er toch voor kiest om kunstmatige intelligentiesystemen binnen werving- en selectieprocessen te implementeren, dan moet je dat op een heel intentionele manier doen. En met een scherpe blik op de achterliggende waarden. Dit onderzoek heeft gereedschap opgeleverd dat daarbij kan helpen. Met de AI in Recruitment (AIR) Discussietool kun je aan de hand van de volgende vijf vragen (en de bijbehorende deelvragen) komen tot een zo verantwoord mogelijke implementatie:1. Wat is voor jouw organisatie eerlijke en rechtvaardige werving en selectie?2. Hoe zit het met de benodigde data?3. Blijft de mens de baas over het proces?4. Is jouw organisatie en is de technologie onbevooroordeeld?5. Weet je zeker dat de technologie werkt en dat het blijft werken?
MULTIFILE
In het project werken onderzoekers van het Lectoraat samen met publieke organisaties toe naar een tool waarmee onderstromen in het publieke debat rondom issues eerder kunnen worden opgemerkt. We exploreren met welk algoritme we patronen in geruchtvorming en mobilisatie kunnen opsporen, en tevens hoe we de interactie tussen newsroom-analisten en de output van een monitoring tool het beste kunnen vormgeven.Doel Het doel van dit project is een brede en structureel toepasbare aanpak van het issuemanagement: Hoe kunnen de communicatieprofessionals van publieke organisaties potentiële issues op sociale media vroegtijdig opmerken? Resultaten We willen dit bereiken door enerzijds kennis en inzicht te vergaren en anderzijds de uitkomsten daarvan voor publieke organisaties te vertalen in praktische handgrepen: tools, handleiding, training. Looptijd 01 oktober 2022 - 30 september 2024 Aanpak Via cases ingebracht door de praktijkpartners en focusgroepen staan we in nauw contact met het consortium. In de eerste werkpakketten onderzoeken we de verschillende cases aan de hand van discoursanalyse. De inzichten die we hierbij opdoen, gebruiken we vervolgens om te bekijken hoe we de interactie tussen mens en machine het beste kunnen vormgeven en wel zo dat er ten behoeve van de communicatie en het management van issues via interactieve visualisaties steeds weer triggers afgegeven worden. Op basis van de opgedane inzichten richten we een interface in. Deze maakt het analisten en communicatieprofessionals mogelijk om vroegtijdig issues te signaleren.
Dit voorstel betreft een onderzoek naar de verschillen in zuiverheid tussen virgin kunststof en post-industrial en post-consumer kunststof-reststromen in relatie tot de inzet van deze materialen bij 3D printen. Thermoplastische kunststoffen zijn in theorie goed te recyclen en opnieuw te gebruiken, bijvoorbeeld in een 3D print proces. In de praktijk blijkt het echter een uitdaging om gerecycled filament te produceren dat geschikt is voor de huidige machine-eisen. De oorsprong van dit project ligt in de gedachte om niet het materiaal aan te passen aan de machine, maar de machine aan het materiaal en hierdoor het gebruik van kunststofrecyclaat in 3D-printen te vergroten. Alvorens dit te kunnen, is meer inzicht in de materiaaleigenschappen nodig. Het doel van dit project is dan ook om de verschillende samenstellingen van kunststof-reststromen in kaart te brengen en hoe dit zich vertaald in mechanische en esthetische kwaliteit ten opzichte van virgin materiaal en wat dit vraagt aan aanpassingen aan 3D printers om deze kunststof-reststromen te kunnen verwerken. Dit onderzoek is een eerste fase in een groter onderzoeksproject. Volgende fasen zullen zich toespitsen op het optimaliseren van productietechnieken voor het printen met gerecycled kunststof en het ontwikkelen van mogelijke toepassingen en bijbehorende circulaire business modellen. Aanleiding voor dit onderzoeksvoorstel is tweeledig. Enerzijds de ervaring van Cre8 dat 3D printen relatief veel kunststof restmateriaal oplevert in de vorm van mislukte prints, proefprints en prototypes met korte levensduur. Passend bij hun duurzame bedrijfsprofiel heeft Cre8 de behoefte om hun eigen reststroom en reststromen uit hun omgeving in te zetten in het productieproces. Anderzijds ziet Refilment zich geconfronteerd met de complexe samenhang tussen de samenstelling van kunststof-reststromen en zijn verwerkingsmogelijkheden (bijvoorbeeld extruder-diameter en verwerkingstemperatuur).
De glastuinbouw in Nederland is wereldwijd toonaangevend en loopt voorop in automatisering en data-gedreven bedrijfsvoering. Voor de data-gedreven teelt wordt, naast het monitoren van de kas-parameters ook het monitoren van gewasparameters steeds meer gevraagd. De sector is daarbij vooral geïnteresseerd in niet-destructieve, contactloze en persoonsonafhankelijk monitoring van gewassen. Optische sensortechnologie, zoals spectrale afbeeldingstechnologie, kan veel waardevolle informatie opleveren over de staat van een gewas of vrucht, bijvoorbeeld over het suikergehalte, maar ook de aanwezigheid van plantziektes of insecten. Echter is dit vaak een te kostbare oplossing voor zowel de technologiebedrijven die oplossingen leveren als voor de telers zelf. In dit project onderzoeken wij de mogelijkheid om spectrale beeldvorming tegen lagere kosten te realiseren. Het beoogde resultaat is een prototype van een instrument dat tegen lage kosten met spectrale beeldvorming een of meerdere gewaseigenschappen kan kwantificeren. Realisatie van dit prototype heeft een sterke Fotonica-component (expertise Haagse Hogeschool) maakt gebruik van Machine Learning (expertise perClass) en is bedoeld voor toepassing op scout robots in de glastuinbouw (expertise Mythronics). Een betaalbare oplossing betekent in potentie voor de teler een betere controle over kwaliteit van het gewas en automatisering voor detectie van ziekte-uitbraken. Bij een succesvol prototype kan deze innovatie leiden tot betere voedselkwaliteit en minder verspilling in de glastuinbouw.