Previous research has suggested that professional youth work settings empower socially vulnerable youngsters, strengthening their personal development and social participation. It is expected that youth work can prevent personal and social problems of youngsters, which may have longer term positive social returns. How the underlying methodical way of acting of youth workers contributes to prevention-focused outcomes remains unclear. This article presents a four-wave longitudinal cohort study (16 months) that investigated longitudinal associations between 12 individual methodical principles that youth workers apply in interactions with youngsters and four prevention-focused outcomes: prosocial skills, self-mastery, social network and civic participation. The sample consisted of 1,597 Dutch youngsters with a mean age of 16.5 years (SD = 3.60). Findings: Linear mixed models analysis found that all individual methodical principles were longitudinally associated with one or more outcome. The strongest associations were observed with regard to prosocial skills and civic participation. Depending on the outcome measure, methodical principles seem to be more effective for boys, for youngsters who participate for 3 years or longer in youth work settings and for youngsters between 10 and 19 years old. With regard to the effect of methodical principles on improving self-mastery, 9 of the 12 principles appeared to play no positive role in increasing self-mastery of youngsters. Applications: This study provides youth workers with a better understanding of which methodical principles are positively associated with prevention-focused outcomes as well as reinforcing the evidence-based practice of professional youth work.
In a society with increasingly unequal access to opportunities and an expanding pressure on youngsters to perform, safe spaces where socially vulnerable youngsters are allowed to learn and develop valuable skills are highly important. In the Youngsterdam project, professional youth workers support these youngsters in organizing their own activities through applying the method Youth Organizing. This youth work method invites and motivates youngsters to organize activities initiated by themselves. Through these non-formal learning experiences, youngsters experience positive encounters with peers and others from their neighbourhood – increasing their social participation – have the opportunity to develop their talents, and gain insights into their future. In addition, they could learn to bear responsibility and gain useful communication and organization skills. Innovative in this approach is the application of Open Badges: a digital system for the (international) recognition of non-formal learning experiences. This tool can enhance youngsters’ learning process by continuously motivating them to learn and allowing for (self-)recognition of skills and experiences.In a learning community of youth workers, researchers, students and social work educators we aim to co-create knowledge focused on the following question: To what extent does Youth Organizing in combination with Open Badges motivate youngsters to gain new learning experiences in a voluntary, non-formal learning environment? Under supervision of researchers, Social Work students will obtain empirical data through structured observations and in-depth interviews with youngsters and youth workers. Additionally, through this learning community, youth workers can reflect on their own actions and methods. Results are expected in Winter 2022.
Vanwege veranderende onderwijskundige inzichten - 21st century learning - worden schoolgebouwen verbouwd of vervangen door nieuwbouw. Deze 21st century leeromgevingen blijken in de praktijk niet te voldoen aan de verwachting van de gebruikers. Het ontwikkelen en gebruiken van een 21st century leeromgeving stelt blijkbaar specifieke eisen aan de 21st century competenties van alle betrokkenen. Dit roept vragen op ten aanzien van product en proces. De beantwoording van deze vragen vereist kennis van wisselwerking tussen psycho-sociale leeromgeving en fysieke leeromgeving. Het betreft onder andere de benodigde “ruimtelijke competenties” van de betrokkenen om de fysieke leeromgevingen te ontwikkelen en te gebruiken en - andersom - hoe de fysieke leeromgeving de ontwikkeling van 21st century competenties beïnvloedt. De kiem voor dit onderzoeksproject is gelegd toen scholen en vormgevers deze vragen voorlegden aan experts van de NHL Hogeschool en TU Eindhoven. Dit KIEM project wil de probleemstelling in één of meerdere praktijkvragen articuleren door het uitvoeren van een reeks workshops met een focusgroep van stakeholders. De uitkomsten hiervan zullen worden vertaald naar een voorstel voor een langduriger onderzoeksproject. In dit beoogde vervolgproject zullen de gearticuleerde vragen worden vertaald naar één of meer praktijkonderzoeken waarin wetenschappelijke kennis en methodes worden doorontwikkeld en beproefd op het effectief stimuleren van 21st century vaardigheden van docenten en vormgevers in praktijksituaties. Dit project maakt deel uit van de opbouw van een regionaal kennisnetwerk Onderwijs & Ruimte, wat op een duurzame wijze wil bijdragen aan de kennisontwikkeling en -deling betreffende de 21st century leeromgeving. De kern van dit netwerk wordt gevormd door de initiatiefnemers van deze aanvraag; Adema Architecten (MKB), lectoraat Open Innovation van de NHL Hogeschool (Onderzoeksinstelling) en Next Level (Onderwijs).
Heb je wel eens gemerkt dat de premie voor je autoverzekering verandert als je in een andere wijk gaat wonen? Verzekeraars berekenen dit met een algoritme, wat kan leiden tot indirecte discriminatie. Dit project onderzoekt hoe zulke digitale differentiatie (DD) zowel eerlijk als rendabel kan.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.